vibrav.numerical.derivatives module¶
- vibrav.numerical.derivatives.arb_disps_1d(plus, minus, disp_steps, delta)[source]¶
Unlike the functions
vibrav.numerical.derivatives.four_point_1d()
,vibrav.numerical.derivatives.six_point_1d()
. This function serves to calculate a derivative when the displacements are not constant.Note
This requires that the steps are symmetric. Meaning, the steps that are taken in the positive direction must be the same as in the negative direction.
- Parameters:
plus (
numpy.ndarray
) – Array with the positive displacement data.minus (
numpy.ndarray
) – Array with the negative displacement data.disp_steps (
numpy.ndarray
) – Array with the displacement step size taken.delta (
float
) – Displacement taken for first diaplacement step.
- Returns:
deriv (
float
) – Numerical first derivative for given data.
- vibrav.numerical.derivatives.four_point_1d(plus, minus, delta)[source]¶
Four point central finite difference method to approximate the first derivative of the input data, also know as the five point stencil.
- Parameters:
plus (
float
) – Data frame with the positive displacement data.minus (
float
) – Data frame with the negative displacement data.delta (
float
) – Displacement parameter used.
- Returns:
deriv (
float
) – Numerical first derivative for given data.
- vibrav.numerical.derivatives.get_pos_neg_gradients(grad, freq, nmodes)[source]¶
Here we get the gradients of the equilibrium, positive and negative displaced structures. We extract them from the gradient dataframe and convert them into normal coordinates by multiplying them by the frequency normal mode displacement values.
- Parameters:
grad (
exatomic.gradient.Gradient
) – DataFrame containing all of the gradient datafreq (
exatomic.atom.Frquency
) – DataFrame containing all of the frequency datanmodes (int) – Number of normal modes in the molecule.
- Returns:
delfq_zero (pandas.DataFrame) –
- Normal mode converted gradients
of equilibrium structure
- delfq_plus (pandas.DataFrame): Normal mode converted gradients
of positive displaced structure
- delfq_minus (pandas.DataFrame): Normal mode converted gradients
of negative displaced structure
- vibrav.numerical.derivatives.six_point_1d(plus, minus, delta)[source]¶
Six point central finite difference method to approximate the first derivative of the input data.
- Parameters:
plus (
float
) – Data frame with the positive displacement data.minus (
float
) – Data frame with the negative displacement data.delta (
float
) – Displacement parameter used.
- Returns:
deriv (
float
) – Numerical first derivative for given data.
- vibrav.numerical.derivatives.two_point_1d(plus, minus, delta)[source]¶
Two point central finite difference method to approximate the first derivative of the input data.
- Parameters:
plus (
float
) – Data frame with the positive displacement data.minus (
float
) – Data frame with the negative displacement data.delta (
float
) – Displacement parameter used.
- Returns:
deriv (
float
) – Numerical first derivative for given data.