{ "cells": [ { "cell_type": "markdown", "id": "7e56e27a", "metadata": {}, "source": [ "# VROA intensities of hydrogen peroxide\n", "\n", "Here we show an example of how to calculate the VROA intensities of hydrogen peroxide calculated with an incident wavelength of 242.7 nm." ] }, { "cell_type": "markdown", "id": "1865d858-bb96-4b1e-8a8e-a665f2ad8e3d", "metadata": {}, "source": [ "## Run the VROA code" ] }, { "cell_type": "markdown", "id": "e2adbe82", "metadata": {}, "source": [ "First import any packages that we need. Mainly just need the VROA class from vibrav." ] }, { "cell_type": "code", "execution_count": 1, "id": "5cf99267", "metadata": {}, "outputs": [], "source": [ "from vibrav.base import resource\n", "from vibrav import VROA\n", "import numpy as np" ] }, { "cell_type": "markdown", "id": "9767b4b0", "metadata": {}, "source": [ "Initialize the class and print the elements in the configuration file" ] }, { "cell_type": "code", "execution_count": 2, "id": "7f760f13-459d-4a0d-9eff-0a6a7fd51d58", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DELTA_FILE h2o2-vroa-delta.dat.xz\n", "SMATRIX_FILE h2o2-vroa-smatrix.dat.xz\n", "ATOM_ORDER_FILE h2o2-vroa-atom_order.dat.xz\n", "REDUCED_MASS_FILE h2o2-vroa-redmass.dat.xz\n", "FREQUENCY_FILE h2o2-vroa-freq.dat.xz\n", "EQCOORD_FILE h2o2-vroa-eqcoord.dat.xz\n", "ROA_FILE h2o2-vroa-roa.csv.xz\n", "GRAD_FILE h2o2-vroa-grad.csv.xz\n", "NUMBER_OF_MODES 6\n", "NUMBER_OF_NUCLEI 4\n", "USE_RESOURCE 1\n", "\n" ] } ], "source": [ "with open(resource('h2o2-vroa-va.conf'), 'r') as fn:\n", " print(fn.read())" ] }, { "cell_type": "code", "execution_count": 3, "id": "62dfe463", "metadata": {}, "outputs": [], "source": [ "vroa = VROA(config_file=resource('h2o2-vroa-va.conf'))" ] }, { "cell_type": "markdown", "id": "99293762", "metadata": {}, "source": [ "Run the `vroa` method to calculate the intensities. Internally we read the ROA and gradient data from the lines in the configuration file corresponding to `roa_file` and `grad_file`. These have to be created prior to the run and are simple csv files generated by the python library, pandas.\n", "\n", "For more information about how we parse the outputs you can refer to the tutorial on parsing the NWChem outputs using exatomic." ] }, { "cell_type": "code", "execution_count": 4, "id": "d406892d", "metadata": {}, "outputs": [], "source": [ "vroa.vroa()" ] }, { "cell_type": "markdown", "id": "05691c8d", "metadata": {}, "source": [ "Print the VROA intensities and other pertinent information" ] }, { "cell_type": "code", "execution_count": 5, "id": "9ac6314c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
freqfreqdxbeta_g*1e6beta_A*1e6alpha_g*1e6backscatterforwardscatterexc_freqexc_idx
0342.3720660-474977.069418-2639.805042-46678.598862-45.682272-41.165987242.70
1857.1462671-12971.041317-67.2902511069.733854-1.2473730.563748242.70
21242.3101302-5197.233435601.900754-0.014164-0.479674-0.092796242.70
31371.3566703-164123.3519533670.708147-11271.522457-15.638379-10.800201242.70
43591.2007804-87823.4509862410.48933654.565691-8.353916-1.404456242.70
53591.9281805-42432.0138162504.4521925609.324487-3.9933313.319730242.70
\n", "
" ], "text/plain": [ " freq freqdx beta_g*1e6 beta_A*1e6 alpha_g*1e6 backscatter \\\n", "0 342.372066 0 -474977.069418 -2639.805042 -46678.598862 -45.682272 \n", "1 857.146267 1 -12971.041317 -67.290251 1069.733854 -1.247373 \n", "2 1242.310130 2 -5197.233435 601.900754 -0.014164 -0.479674 \n", "3 1371.356670 3 -164123.351953 3670.708147 -11271.522457 -15.638379 \n", "4 3591.200780 4 -87823.450986 2410.489336 54.565691 -8.353916 \n", "5 3591.928180 5 -42432.013816 2504.452192 5609.324487 -3.993331 \n", "\n", " forwardscatter exc_freq exc_idx \n", "0 -41.165987 242.7 0 \n", "1 0.563748 242.7 0 \n", "2 -0.092796 242.7 0 \n", "3 -10.800201 242.7 0 \n", "4 -1.404456 242.7 0 \n", "5 3.319730 242.7 0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vroa.scatter" ] }, { "cell_type": "markdown", "id": "335408d3", "metadata": {}, "source": [ "## Plot the calculated intensities\n", "\n", "We use a full-width at half-maximum of 20 wavenumbers.\n", "\n", "For this example we use 'atomic' units where the calculated VROA units are in $\\unicode{xC5}^4/\\text{amu}$" ] }, { "cell_type": "markdown", "id": "5586f051-6ba5-40dc-a467-4c72db1e3cff", "metadata": {}, "source": [ "Set up the lineshape function" ] }, { "cell_type": "code", "execution_count": 6, "id": "817eff46", "metadata": {}, "outputs": [], "source": [ "def lorentz(omega, omega_0, fwhm):\n", " return (1/np.pi) * 05.*fwhm / ((omega-omega_0)**2 + 0.25*fwhm**2)" ] }, { "cell_type": "code", "execution_count": 7, "id": "bfb673c5", "metadata": {}, "outputs": [], "source": [ "x = np.linspace(0, 1800, 1000)\n", "y = np.zeros(1000)\n", "arr = zip(vroa.scatter['freq'], vroa.scatter['forwardscatter'])\n", "for omega_0, inten in arr:\n", " y += lorentz(omega=x, omega_0=omega_0, fwhm=20)*inten" ] }, { "cell_type": "code", "execution_count": 8, "id": "3f418049", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 9, "id": "2c90d7fe", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAJQCAYAAABM9b9uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAB7CAAAewgFu0HU+AAC350lEQVR4nOzdeXyM1/4H8M8sSSa7kCCILbFTWhJqqapqFLH9SouqqqLo7Y4utl7V1tJ7e/VWVZNaaiuqRLQU15IoEqGI2qskEUGE7MvMPL8/JvPkmcxMMiEzk5l83q9XXnlmnvOcOYmYme+c7/kemSAIAoiIiIiIiGoYub0HQEREREREZA8MhoiIiIiIqEZiMERERERERDUSgyEiIiIiIqqRGAwREREREVGNxGCIiIiIiIhqJAZDRERERERUIzEYIiIiIiKiGonBEBERERER1UgMhoiIiIiIqEZiMERERERERDUSgyEiIiIiIqqRGAwREREREVGNxGCIiIiIiIhqJAZDRERERERUIzEYIiIiIiKiGonBEBERERER1UhKew+AqDooKCjAmTNnAAABAQFQKvlfg4iIiKg6UavVuH37NgCgQ4cOUKlUD90n3/ERAThz5gzCwsLsPQwiIiIiskB8fDxCQ0Mfuh+myRERERERUY3EmSEi6FLj9OLj4xEYGGjH0RARERFRWWlpaWImj/S928NgMEQEGKwRCgwMRKNGjew4GiIiIiIqT1Wt72aaHBERERER1UgMhoiIiIiIqEZiMERERERERDUSgyEiIiIiIqqRGAwREREREVGNxGCIiIiIiIhqJAZDRERERERUIzEYIiIiIiKiGonBEBERERER1UgMhoiIiIiIqEZiMERERERERDUSgyEiIiIiIqqRGAwREREREVGNxGCIqp3r16/jvffeQ5s2beDp6YnatWsjLCwMS5YsQV5enr2HR0REREROQmnvARBJ7dy5E2PGjMH9+/fF+/Ly8pCQkICEhARERkbil19+QfPmze04SiIiIiJyBpwZomrj1KlTGDlyJO7fvw8vLy8sWLAAv//+O/bt24eJEycCAC5cuICBAwciJyfHzqMlIiIiIkfHmSGqNt566y3k5eVBqVTit99+w+OPPy6ee+qpp9CiRQvMmDED58+fx7/+9S/MmTPHjqMlIrKNrIJifLH7Ak5cv4eOQb6Y/kxr+Hq42HtYREROgTNDVC0kJCTgwIEDAIAJEyYYBEJ67777Ltq0aQMA+PLLL1FcXGzLIRIR2VxOoRqjvzuK1Ueu4Uzqfaw9eh0vRh1DVgGf/4iIqgKDIaoWtm3bJh6PHz/eZBu5XI6XXnoJAJCZmSkGT0REzqigWIPXfkhEUmqWwf1nUu9jwqoE5Bdp7DQyIiLnwWCIqoXY2FgAgKenJzp37my2Xe/evcXjuLg4q4+LiMgeMnOLMHHNccRdvgMA8HV3wbIxj6G2pysAIOHvTIxfFY+MnEJ7DpOIyOFxzRBVC+fOnQMAhISEQKk0/2fZunVro2uIiJyBVivg3M0s7PkzHT8cuYaM3CIAgIerAt+/HIrOTfwQ5OeBUd8dRU6hGkf/uos+Sw7gxW5N8Ey7+mgb6ANXJT/jJCKqDAZDZHcFBQW4c0f36WejRo3Kbevn5wdPT0/k5uYiOTnZ4sdISUkp93xaWprFfVUFjVZAsUYLhVwGhUwGmQyQyWQ2HQORs9BqBWgEAVpBgFYLybEATck5QdD9v9NoS44F/bEgHmu1gLbktlYrQFtyjbakP/2xpqRd6eNCfKzStih5XMHk42q1ArIKipGZV4x7eUVIyczH1Tu5KFRrDX622p6u+GbMY+jcxA8A0KGRL1a/EobX1ibidnYhsgrUWHbgCpYduAKlXIYmdTwQ6OuOWh4u8PNwhY+7Eq4KBdxc5HBVyMXvSoUMcpkMMpkMchkgL/muu116n0w8V/I8BQD6c9C117XRndC30fcrK7kPgNiXTHL/g14nfeyy10EG8f6y18HgvpI+Sh6Dz8Gk//+qlj53aAEBuv/nQsn/dwG6/8+CoHsuEKB7DgBKbkvuF8TbJf1ozVwvCCVjEEdjcFsQx2g4XlPnBBheZPa8yf4N+0SZa8T20nGUfO8RUgcero4XWjjeiMnpZGdni8deXl4VttcHQ5Uprx0UFGRx2+bNm1v9RdG1cUfU+b+5BvcJWg10z7oCBEEL3TOm5Lb+S6stuS2Uua37Es9ppbcl12rVEDRqQKOGoC35rlEDWg0EbbHJc6XHxRCKCyGoCyEUF+iOpd/VRbrHIceiUEKmVEHm4lbypYJM6QqZiwpyFzfIlG66NgolIFdCpnAp+V5yn8IFMrlSbCM9hkwByOWQyeSATK47lit0x7KS++VyozaQKUrPyeSQlXw3PlbY+7dnFYJWg4KLv+PcoVV44pNMo/NyTz949xgD9za9xd+BWivgyu1cXLmda+vhOo3S51YBgFDyLk93LIj3Q3LesJ1gcK0WgroYgrpI95ypLhKfP7X5WdDmZkKTcxeazBsozkiGUFD6WgiZHHJPP8g9fEv/vwhCyfNtPrRFBRCK8gGt2qa/H9uTQe7uo/s9qDwhd/WAzE3/3QNyNw/IlK6AwlX3nKV00X1X6I6hP5bLAblC97wiV0iehyTHcoXTPp/Yyq3vp0BzP92qjyFIo7AqwmCI7K6goEA8dnV1rbC9m5sbACA/P99qY7I2mcw4lUX3JKx7Inbkzyd1gVIhtIV50BbkQCjIhrYgR/zS3c6GJicDmuwMaHPuQlBz3UPVKHnj4OkHhZdfyZspP8hVXpCrPCF389K9kVB5QubmBbmbJ2SuKr4BqAYEjRqa+zehvpuKwuunUPhXIjTZt8221+Zm4v5v/0V23Fq4Ne8Ct6AOUNZuBGXthro3h/RAdAG5mXNWfmxN3n1os+9A7lELcs9aFv2/1OZnQZObqQuscjOhuXcT6oxkqO8mQ33vJqB1gCIbciWU/o3Fv19l7UZQeNWBwqs25B61dB+qEFkR/8LI7lQqlXhcVFRUYfvCQt0bZ3d3d4sfo6KUurS0NISFhQEA/vrrrwrT9R7WyeuZ+PzX8yUpNZCk30hSbqSpPoIkhUdMxYGYblOa2lOa5mOFD08sIlPqZhLk7j4WX+OtUiLQV4XGtT3QPMALwQGeCA7wQkhdL9Ty4Bs7KUEQkHovH+fTsvF3Ri6u3snFtYw8/J2Ri5v3C6DW2ukf/gHIZYBCrkvBUsplkMtlYuqovOS7Ql76JW2vv08mk0EhuV9/Tq5vL5Mcl20jk0EhL0kD0z+uDKXHkjaKkpSy0seFOD6DMeivMfu4pWln3iol/DxdxZQ2F8XDr/cRBAHZhWrcyy3G3bwi5BSoUaTRoEitRWHJV5FaKz63aAXDtJ7S26XH+uckMbUHJSk9Jcdl04BKJ0/KpBRBP+miv214nbQ/rbRvAJCMU3odDPo2vA6QpCEZjcP0dRBTm6TXlfZX9j6hzDil12kFAYVqLfKLNChQayp8TlZ4+ELh4Vupf2+5u4/uuda/idE5lYscXZrURrfmtfFkq7po18CnWqQCCoKAszey8NvZmzh29S7+SL5nlB5aVeQywE2pgItCBqVCDoVc91xj+L3kfkXpc5H0tmEKKQDob0tSLkvSLaWppWXTSGWQQS43cb2knawk5BZTREt+jtKUUZnB/dIbFV5r5rz0TkuvKTsevRfnXLH6HmgpKSmVyvaxBIMhsjtvb2/x2JLUt9xcXQqIJSl1etYObirr0cZ++HGy8V5KVUmf+6x/Q6PPg1ZrtCjW6NYsFUuOizRaFKsNb6ul5zRaFBRrUVCsQV6RGnlFGuQXaZBX8pVfrDa4nV1QjPv5xbDkvXl2gRrZBTm4mJ4DnLtlcK5JHQ90CqqFR4NqoVtwHbSq510tXtBtpaBYgxPXMvH7lQz8kXwPSTfu417ew+0xo5TL4OvuAl93F3iplFC5KODhqoC7iwLuJd89XBVwd1Xq7nORw7XkDYWrUrfmxEUhh4tSrrtPf1shh6tSVvJdDqVcbhTkSAObmvTvaCsymQw+Khf4qFzQuI6HvYdDJQRBQJFGi4IiLfKK1biTXYRb2QW4cS8fl2/l4PLtHFxKz8Gt7EL4e7ki0Ncdgb4q+Hu7wbXkTbxGK+ieY4s1yCtUIzOvCLeyC3EruxBFJoKJgmIt4i7fQdzlO1jy20W0rOeFEZ2DMLprY3i62f7tX16RGuuPXcf6+Ov4y4JUTn8vV9T1VqGejxsCvN3g6+4Cb5ULvFVKeKtc4KNSwkule45SuSjgppSL391cFFAp5VBWwQcM5PwYDJHdqVQq+Pv7486dOxUWOsjMzBSDoar+ZMDZyGS6T7bsSavVfUp9P68Y9/KLcC+vGPfyi5GRU4ibWQW4eb/kq+TY1KeD1zLycC0jD9v/uAEAaOCrwpOt62JQh0B0a14HcrnzvaHOLijGnj/TsePUDfx+JcOiT019VEo08vNAPR+30jcQPirU9XYTF9LrAyB3FwUDESIbkslkcFMq4KZUwBcuCPR1B2A8C6TRClBU8jlNEARk5auRlpWPv27n4lJ6Di7dykbitUyk3S9NQ7+YnoMFv5zD8oNX8ObTLfBi1yY2ef4UBAGbjidj4a4LuJtrnP3RyM8dXZr4oU2gj5gR0NDPvUpmSokswWCIqoU2bdogNjYWly9fhlqtNlte+/z58wbXUPUml8xANEb5n1JrtQJuZhXgyu0cXCn5pPRcWjaSUu8bBAM37hfoPl08dh0Na7njhdAgvPR4U6tPzdvCnzeyEBn7F2LOpJn8pBfQfVravqEv2jXQvXFo6u+JZnU8UcvDhQEOkYOrbCAE6AItXw8X+Hq4oHV9H6CD7n5BEJB8Nx+HLt3GtpOpOH5NV4gjI7cIc7afxa9nbuK/ox9FHS+3qvwRDNzLK8KbG//AwYuG69/CmtXG4I4N8FTrumhQy/KUdyJrYDBE1ULPnj0RGxuL3NxcJCYmomvXribbHTx4UDzu0aOHrYZHNiCXy9Cgljsa1HJHrxYB4v3FGi3Op2Uj4e+7OHDxNo7+lSEGCqn38vHFnotYcegvjOveFK89GQwvO6R/PKyL6dn49JdzOHDBeMF8fR8VerXwR48Qf3RtXhv1fVQMeoioQjKZDI3reODFOk3wYrcmuHwrB//Zdwk7Tulm2Y/8lYFhy37H+old0civ6lMqb94vwJjIowbVDQc9Eog3+rZAy3re5VxJZFsywRo16ogqKT4+XgyAJk+ejOXLlxu10Wq1aN++Pc6dO4datWrh1q1bcHGpmtkA6YK85OTkarfGiErlFanxv/O3sCUxBYcu3jZYk1TfR4WPh7RDeLv69htgJRQUa/DFbxcQFXfV4Oeo5eGCIR0bIKJjAzzW2M8pUwGJyD5+v3IHb//4B9KzdMWImgd44qfXusPPs+qK1WQVFGPk8iM4f1NXLtzfyxWLn+uIPq3rVtljUM1kjfdrTMikaiEsLAy9evUCAERFReHIkSNGbb744gucO3cOAPDmm29WWSBEjsXDVYlBjzTAqvFhOPBeH4wKawyXkrVRN7MKMPmHRMyLPms2zay6uHonF0O/PozvYksDoYa13PHx4Hb4/f2n8PGQ9ujStDYDISKqUt2D/bFtWg809/cEAPx1Oxczfjpdpfu3fLj1jBgIBdV2x89TezAQomrLrjND169ff6jrGzduXEUjoerg5MmT6NGjB/Lz8+Hl5YUPP/wQffr0QX5+PjZu3IgVK1YAAFq2bInjx48bVKF7WJwZcmzXM/IwNzoJ+yVpZt2D6yByXJdquRv2yeuZmLD6uLiY2FUpxz/6hGDiE82hcuGeP0Rkfcl38zD068PIKHkeWjKiI57r/PCvfbuS0vDa2hMAdIVdfp7WA8EBlld/JSqPNd6v2TUYUige/EVfJpNBrXb2nZdrnh07duDFF19EVlaWyfMtW7bEzp07ERISUqWPy2DI8QmCgPXx1/Fx9J8o0uhmhbo08cPK8aHwVlWfWcQT1zMx5rtjyC/WbYbYoq4Xvhr9qG7hMxGRDf129iYm/ZAIAKjn44aD0/s81AcyxRot+iw5gJRM3abo/3mhE4Z0alglYyUCnDBNTijZ2O1Bv8j5RERE4PTp03j77bfRsmVLeHh4oFatWujSpQsWLlyIkydPVnkgRM5BJpNhTNcm2Di5G7xVutmg49cy8caGk9BUk41I/76Ti1dXHxcDoceb18FPU7szECIiu3imXX30a1sPAJCeVYi1R689VH8/n0wVA6GeIf4Y3LHBQ4+RyNrsOjO0evXqCtvk5ubiwoUL+Omnn3Djxg10794dEydOBACMGzfO2kOkGoIzQ84lKfU+xkQew/183eakU58Mxoz+re06prwiNQZ9FSduNtg9uA5Wjg+Fm5JpcURkP+fSsvDsf2IB6NYtxs7o80BrFQVBQN9/HRSf436a8jg6N6ldpWMlssb7Nbsm01cmmFmyZAneeOMNrFixAt27d8eiRYusODIicmTtG/rimxcfw0tR8VBrBXxz8AqebFUXYc3s98K8YOc58U1Ci7pe+ObFzgyEiMju2gT64MlWAThw4TZS7+Xj6NUMdA/2r3Q/p1Lui89xYU1rMxAih+Ew1eRcXFzwzTff4IknnsAXX3yB3bt323tIRFSNdQ/2x9v9WgIABAF4f+tpFGvsU2Hu+N93se6YrmCMu4sC347tDF/36rOOiYhqNmnhhJ8SUx+oj20nS6+rikIMRLbiMMGQ3pQpUyAIAr766it7D4WIqrnXegfj0ca1AOjKx6458nD58A9CqxXw8Y4/xdvvP9sazVlZiYiqkafb1INPyVrLXUlplf7gSKMVxM1cXZVy9O/gGHu9EQEOGAy1aNECAHD8+HE7j4SIqjuFXIaPB7eDrCT9/av/XUJuoW2rUP6adBNnUu8DAFrX98aL3ZrY9PGJiCqiclHgqZJ9gHKLNDiVfK9S159LyxJLdPduGQCfalTBk6giDhcM3b9/3+A7EVF5HmlUC0NKKhrdyyvGhviH29+sMgRBwLIDl8XbHwxoAwU3USWiaki6Tujw5YxKXXv0r9L2PYLrVNmYiGzB4YIhfQW6wMBAO4+EiBzF1D6l5dgjY69CbaO1Q4cvZ+DsDd2eWR0a+uKJFpVflExEZAvdQ0qDmMNX7lTqWmkw9PgDFF8gsieHCYYuXbqE1157DatXr4ZMJsOAAQPsPSQichAt63nj6Ta6FJCbWQU4ePG2TR53Q0LpLNTk3s0hk3FWiIiqp0Z+HmhSxwMAcPJ6JvKLNBZdp9EKOHb1LgCgtqcrWtbjmkhyLHYtrd28efMK22i1Wty7dw/Z2dnifXXr1sVHH31kzaERkZN5IbQx9p67BQDYfDwFfdvUs+rj3c8rxp6z6QCAOp6uCG/HBcVEVL11bVYb1zLyUKwR8GdaFjo38avwmku3spFdoBav54c+5GjsGgz9/ffflb6mW7duWLlyJdPkiKhSnmwVAH8vN9zJKcS+8+nIzC2Cn6er1R4v+vQNFJWk4w3p1BAuCoeZiCeiGqpDQ19sOp4CQLd5tSXB0IWbpR9Wt2/oa7WxEVlLtd90VS6Xw9vbG82aNUPv3r3RqVMn6w+MiJyOUiHH0E4NEBl3FcUaAQcu3sKwR623F8ZvZ2+Kx8Mfa2i1xyEiqirSYCYp1bJCVRfTS4OhVvW8q3xMRNZm12Bo5cqV9nx4Iqph+rWth8i4qwCAvX9aLxjKKVSLC4ob1nJHuwY+VnkcIqKq1Kp+aTBz6VaORddcTC9tJ72eyFEwb4OIaozOTfzg667b/+LgxdsoUlunqlzsxdso1ggAgL5t6jKHnogcgoerEo383AEAl2/lQBCECq/Rzwx5uCrQsJa7VcdHZA0MhoioxlAq5OjTKgCAbvbm+LW7Vnmc/RduicfWLtRARFSVWtTVVYPLKVQjPauw3LZ5RWpcv5snXifnPmrkgBgMEVGN0qtFgHiccDXTKo8RX1Jm1lUhR9dmta3yGERE1hAcUFoa+6/b5afK6WaPdMctuV6IHJRd1wzpqdVq7Ny5E7Gxsfjrr7+QnZ0Njab8+vYymQz79u2z0QiJyFmESYITa8wM3c4uxN8Zuk9KH2nkC5WLosofg4jIWvR7DQFAcmZeuW2vZZSebx7A/YXIMdk9GDpw4ADGjx+P69dLNycsL0dVJpNBEATm4BPRA2nk54663m64lV2IE9cyodZooazCsteJkgCrS1POChGRYwmqXRoM6VPgzEm7ny8eN6ilstqYiKzJrsHQH3/8gWeffRZFRUUQBAEqlQotWrRArVq1IJczg4+Iqp5MJkNo09rYeSYNuUUanL+ZXaV7YyT8XZp618WCPTqIiKqTxgbBUH45LYEb9wrE4wYsnkAOyq7B0Lx581BYWAg3Nzf861//wvjx46FS8ZMFIrKuLk39sPNMGgDg5PXMKg2GTlwvDYYs2bCQiKg6aejnDpkMEISKZ4Zu3CsNlgJ9+f6NHJNdp1/i4uIgk8nw0UcfYcqUKQyEiMgmOkiCn3OS3dMfllYriLuxN67tAT9P1yrrm4jIFtyUCvh7uQEA0u8XlNs2reS8TAbU8+F7OHJMdg2GCgp0/4n69+9vz2EQUQ3TUrIx4Pm0rCrrNzkzD3lFuuIv3HyQiBxV/ZLA5nZOIdQa8/ux6dcM1fV2g0sVrr0ksiW7/uU2bdoUAFBcXGzPYRBRDeOjchE3B7yYngOttuKNBS1xLq10lqkNgyEiclD1S1LeNFoBd3KKTLYpVGvEc4G+XC9EjsuuwdDQoUMBAIcOHbLnMIioBmoTqAtWcgrVSL1X/iJhS12QpNy1qu9TJX0SEdlafUnK280s06lyN+9LiycwRY4cl12DoTfffBOBgYFYsmQJ/v77b3sOhYhqmNaSYOVcFaXKXUgv7YdpckTkqOpLiiHcvG/6wyJpJTnODJEjs2swFBAQgF9++QXu7u7o2rUrIiMjcf/+fXsOiYhqCGmwcqGKiiicL0mTc1PK0VSycSERkSMJ8HYTj2+bSZMz3GOIwRA5LrtvuvrII4/g0KFD6Nq1KyZPnozXXnsN/v7+8PAo/42ETCbDlStXbDRKInI2LeqV7pZ+NSP3oftTa7S4VlKGtnmAV5Vu5EpEZEsBXqXBUEZOock2dyT315UET0SOxu7B0E8//YQJEyYgOzsbgiBAEATcunWrwutkMpkNRkdEzirIr/QDl+QK9tKwRNr9AmhKCjE0qc1ZISJyXHW8SrcFyDAzM5SZV1r8ys+D2wiQ47JrMHTkyBG88MIL0Gh0pWibNGmCRx55BLVq1YJczk9Vich6PN2U8PdyxZ2cogo3FrSENKAKqs2UESJyXHWkM0O5pmeG7uWVBkm1PFysPiYia7FrMPTJJ59Ao9HA19cX69evx7PPPmvP4RBRDRNU2wN3coqQnlWIgmINVC6KB+5LGlA15swQETmwOpINo82V1s7MlcwMcYNpcmB2nX5JTEyETCbDxx9/zECIiGxOGrSkZD7c7NB1g5khBkNE5LhULgp4u+k+L79jZs1QpmRmyI8zQ+TA7BoM5ebqFi337NnTnsMgohpKGgw9bKocZ4aIyJnULlk3dDfX9MzQvZI1Q65KOdwfYladyN7sGgw1a9YMAJCX9/D5+kRElSWdwUm++3AbryZn6q6XyYCGflwzRESOrVZJUYSs/GJoS4rDSOlnhmp7uLKoFTk0uwZDw4cPhyAI2L17tz2HQUQ1VFXODOkLKNT3UcFNyU9Jicix1XLXpb5pBSC7QG1wThAEcWaIxRPI0dk1GHr33XfRokULfPnllzh+/Lg9h0JENZDhzNCDB0O5hWoxlURaspuIyFFJg5x7+YapcnlFGhRptABYVpscn12DIW9vb+zbtw/t27fHE088gY8++ginT59GQUGBPYdFRDWEdGPB22YWCVviVnbptfV9VQ81JiKi6kA/MwSUrg/SMyie4MmZIXJsdi2trVCUppIIgoDPP/8cn3/+uUXXymQyqNXqihsSEZnhqpSjtqcr7uYW4VbWQwRDWaUf4ARwJ3YicgK+khmfe/mGwZA0OKrFmSFycHYNhgRBKPc2EZG1BXi54W5uEW5nF0IQhAdaCCydVarLYIiInIDhzJBhmhzLapMzsWswNHfuXHs+PBER6vq44UJ6Noo0WmTlq+H7AC/s0lklzgwRkTOQrhm6n182TU6y4SpnhsjBMRgiohpNum7oVnbBAwVDhjNDXDNERI7Pt7w1Q5K9h5gmR47OrgUUiIjsLcBHUkQh+8HWDUmv48wQETkDL7fSz8tzCw3XaDNNjpwJgyEiqtGkMzm3HjAYkl7HNUNE5Aw8JcFQTplgSLrvkHQGicgRMRgiohpNOpNzK/vByvrrZ4ZcFDJuQEhETsFbZT4Yks4USYMmIkdUbf6CBUHAH3/8gVOnTuHOnTvIz8+vsLrcnDlzbDQ6InJW0pmcB0+T0wVRAV5uD1SNjoioupGmyeUUlAmGijQm2xE5omrxF7x69Wp8/PHHuHbtWqWuq6nB0PXr17Fz504cOHAAf/zxB1JSUqDRaODv74/OnTvjhRdewIgRI6BUWvbPe/bsWXz11VfYu3cvUlNT4eXlhTZt2mDMmDGYMGGCxf1s3LgRK1euxOnTp5GZmYn69eujV69emDZtGrp162ZRHxkZGVi6dCm2bduGv//+G4IgoFmzZhg6dCjeeOMN1KlTx6J+iCxlODNU+WBIrdEio2QxMdcLEZGzKC9NTjoz5OGqAJEjs3sw9NFHH+Hzzz+3aI8hmUxW4/cimjNnDj755BOTv4fU1FSkpqYiOjoa//rXv/DTTz+hcePG5fYXFRWFadOmobCw9E1gQUEBYmNjERsbi1WrViEmJqbcIKSgoAAjRoxATEyMwf3Xrl3DtWvXsH79esybNw+zZ88udywJCQkYMmQI0tLSDO4/ffo0Tp8+jcjISGzfvh1dunQptx+iynjYmaGM3CLo/zsGsJIcETkJN6UcLgoZijUC0+TIqdl1zdCxY8fw2WefAQD69euHP/74AydOnACgC3w0Gg3u3LmDXbt2YciQIRAEAT179kRaWhq0Wq09h243N27cgCAI8PT0xIsvvoiVK1ciLi4Ox48fxw8//IDQ0FAAwPHjx/H0008jJyfHbF+7d+/GpEmTUFhYiHr16mHp0qU4duwYfv31VwwfPhwAcPToUQwfPrzc3/eECRPEQKhPnz7Ytm0b4uPjERUVheDgYGi1WsyZMweRkZFm+0hNTUVERATS0tKgVCoxY8YMHDp0CIcOHcKMGTOgVCpx48YNDBo0CKmpqQ/yqyMyyctNCZWL7qnwTk7lgyHpNQHeLDFLRM5BJpOJKXBGwVCR7rZCLoObksvPycEJdjRu3DhBJpMJzZo1E4qLiwVBEISkpCRBJpMJcrncqP2yZcsEmUwmdOrUSSgsLLT1cKuFGTNmCAsXLhSysrJMnler1cLIkSMFAAIA4Z///KfJdsXFxUJISIgAQPDx8REuX75s1Gbq1KliP6tXrzbZz4EDB8Q2ERERglqtNjh/+/ZtoXHjxgIAwc/PT8jMzDTZz7hx48R+Nm3aZHR+06ZN4vnx48eb7ONhJCcni/0nJydXef9UvXX7dK/QZGaM0OWTPZW+9vCl20KTmTFCk5kxwue/nrPC6IiI7KPH5/uEJjNjhM7zfzO4v8/i/UKTmTFCh7m77DQyqqms8X7NruH877//DplMhjfeeMOidSlTpkzB//3f/+H06dNYtmyZDUZY/SxcuBAzZsyAt7e3yfMKhQLLli2Dq6vuE+otW7aYbPfzzz/j8uXLAIAPPvgAwcHBRm0WL14MPz8/8diURYsWGTyuQmGYO+zv74+FCxcCADIzMxEVFWXUR3p6OtauXQsACA8Px4gRI4zajBgxAuHh4QCANWvWID093eR4iB6EftPAe3lFlU7Fle7MzhKzRORM9DND2WUKKOhnipgiR87ArsGQfm1Iu3btxPvk8tIhFRcXG10zduxYCIKAH3/80foDdFB16tTBI488AgC4cuWKyTbbtm0Tj19++WWTbTw8PDBy5EgAQFJSEi5dumRwPicnB/v27QOgS3Ns1KiRyX6GDx8OHx8fAMDWrVuNzkdHR0Oj0VWmGT9+vJmfqnScGo0G0dHRZtsRVZZ+08BijWBQJckS9xgMEZGT0pfXLlRrUawpTZfPK3meZDBEzsCuwZA+2Klbt654n5eXl3h8+/Zto2uCgoIAQJzVINP0BRGkwaVUbGwsAKBVq1aoX7++2X569+4tHsfFxRmci4+PFx9H2q4sV1dXsZpcfHy8UZCrH0tF/ZQ3FqKH4edRutYnM7eonJbGODNERM5KGuzoiyYIgiCuGfJkJTlyAnYNhgICAgAAWVlZ4n316tUTU63OnTtndI1+Nik7O9sGI3RMt27dEn93rVu3Njqfk5ODlJQUs+elpOfL/ntIb1vaj1qtNpph0vfj6+tbbmAWGBgozjCZ+tsoT0pKSrlfZSvYUc0i3Sj1Xp7xjHR5GAwRkbOS7iGkT5XLL9aIFTQ5M0TOwK7BkD497vz58+J9rq6u4v2mUuHWrVsHAGjQoIENRuiYFi9eDLVa96SlT3OTSklJEddFmEtt09PPxAFAcnKywTnp7arop6I+pP2U7cOS68r7CgsLq1R/5FwMZobyODNERASUpskBpeuEcgz2GGIwRI7PrsFQr169IAgC9u/fb3D/888/D0EQ8P3332POnDk4e/YsEhIS8Prrr2PDhg2QyWR49tln7TTq6u3YsWP48ssvAeiCi6lTpxq1kc6qSdMSTfH09BSPy5bprup+KupD2k95JcOJKks6M8RgiIhIx9PVOE0ur7B0XaWXG9PkyPHZNaQfOnQoZs+ejZiYGGRlZYkpUG+++Sa+++47/P3331iwYAEWLFhgcJ2fnx8++OADewy5WktPT8dzzz0HtVoNmUyG1atXw8PDw6hdQUGBeKyvOmeOm1vphpT5+flW7aeiPqT9lO2jIhXNJKWlpXF2qAaTBjFZZaomVSRLGgx5MBgiIufhJZkZyjY1M8Q0OXICdv0rbteuHfbv3w+1Wi2mdQG6Kmb79+/Hiy++iMOHDxtc0759e/zwww8WpVTZk1qthovLw78xWrlypdlqb1LZ2dkYOHCguBbo008/xVNPPWWyrUqlEo+Lisr/FFxfIAEA3N3drdZPXl5ehX1I+ynbR0Wq+98L2ZePNBjKr9yaIf0aI7kM8GLKCBE5EemaoZySD4ryijQmzxM5Krv/FZurHtakSRPExsbiwoULOHv2LNRqNVq0aIFHH33UxiOs/goKCjBkyBAkJiYCAN555x28//77ZttL9yiqKN0sNzdXPC6bxlaV/eTl5VmU+qbvx5KUOiJL+aikM0MPVkDBx90FcrmsSsdFRGRPBsFQyYxQrsGaIabJkeOzWTCUmJiIzp07V/q6Vq1aoVWrVlYYkXUplcpKVzwzJTAwsNzzarUaI0eOFNddvfrqq/jiiy/KvUY6S6KfSTJHml4mLYJgqp8uXbo8cD/p6ekVjkXaT9k+iB6Gj3vpU2FWfuXS5PTBENcLEZGzkabJ6YMgfVltgDND5Bxs9lccGhqKBg0aYODAgYiIiMDTTz9tkGbljCoqN/2wtFotxo4dix07dgDQFZ749ttvK7zOy8sLQUFBSE5ONqjkZ4r0fJs2bQzOtW3b1mS78vpRKpUICQkx6icxMRH379/HzZs3zZbXTktLE8uwlx0L0cOQzgxlV2JmSKsVxJkkBkNE5GxMldbOZTU5cjI2rSZ348YNREZGYsiQIahTpw4iIiKwYsUK3Lhxw5bDcBqTJ0/Gxo0bAQCDBg3CDz/8YHaT1bJ69uwJALhw4QJu3rxptt3BgwfF4x49ehicCw0NFYseSNuVVVRUhKNHjxpdU3YsFfVT3liIHoZhmpzlM0PZhWpxvw0GQ0TkbEynyZWuGfJkNTlyAjYLhlJSUrB8+XIMGDAAKpUK+fn52LlzJ6ZMmYKgoCB07twZ8+bNE9e9UPneeecdREZGAgD69u2LLVu2VKpgw9ChQ8XjVatWmWyTl5eHTZs2AdDN3rRs2dLgvLe3N/r27QsA2Lt3r9k0t61bt4ozOsOGDTM6P3jwYDGIW7lypdkx68cpl8sxePBgs+2IKkuaClKZAgpZLKtNRE5M+tyYY2JmyJMzQ+QEbBYMNWjQAJMmTcKOHTtw584dbN++HRMnTkRgYCAEQcDJkycxf/58hIWFoWHDhmLbypZQrgnmzZuHf//73wCA7t27Y/v27Qalqy0xbNgwBAcHAwA+++wzXLlyxajN9OnTkZmZKR6b8t577wHQrV2aNm0aNBqNwfk7d+5g5syZAIBatWrh1VdfNeqjfv36GDNmDABg9+7d2LJli1GbzZs3Y/fu3QCAsWPHmk2lI3oQCrkM3iWfgFamgIK+khzAYIiInI802Mkr1r2+5xZJZ4YYDJHjs8tfsbu7OyIiIhAREQFAV1xhx44diImJwYkTJ5CWloaoqChERUVBpVLhqaeeQkREBAYNGoQGDRrYY8jVxldffYWPP/4YANCwYUMsWrQIV69eLfeaVq1aGc0aubi4YOnSpYiIiEBWVhZ69OiBWbNmISwsDJmZmfjuu+/w008/AdClsY0dO9Zk30899RReeOEFbNy4EdHR0ejXrx/eeustNGjQAGfOnMGCBQtw/fp1AMDnn38OPz8/k/0sWLAAu3btwu3btzFq1CgcP34cgwYNAgDExMSIRSECAgLwySefWPjbIrKcj7sLsgvVlSqgwA1XiciZuUuqxeUXmZgZYpocOQGZIOgz3quHGzduICYmBjt27MD//vc/cWZIJtOVrO3UqZMYSD1IdTpH9+STT5a7rsaUq1evomnTpibPfffdd3j99dfN7vETFhaGnTt3wt/f32z/+fn5eO655/DLL7+YPC+XyzF79mzMmzev3HEeO3YMQ4cONbuGqX79+ti2bRu6du1abj8PIiUlRaxQl5yczH2JaqDwfx/ChfRsqFzkOD//WYuu+fVMGqasOwEAeP/Z1nitd7A1h0hEZFP5RRq0mbMLAPB48zrYMKkb3tn0B7aeSAUA7H2nN0LqcqsLsh1rvF+zaQEFS0jT6TIyMhAdHV1uOt3kyZNx6tQpew/bYU2cOBGJiYmYOHEimjdvDpVKhTp16qBnz5745ptvcPjw4XIDIUA307dz506sW7cO/fr1Q926deHq6oqgoCCMHj0acXFxFQZCANC1a1ecOXMGs2bNQvv27eHl5QUvLy906NABs2bNQlJSklUCISKg9BPOgmIt1BqtRddINx/05H4bRORkVC5ylHwWjTwTM0MsrU3OoFr/FatUKgwaNEhMl0pMTBRnjU6ePIm0tDRERkaiYcOG6Nixo51HaxsHDhyo8j7bt2+PFStWPHQ/o0ePxujRox+qD39/f8yfPx/z589/6PEQVYY09z23SANf94o/K8orYolZInJeMpkMHi4K5BZpxA9/pB8CeTBNjpyAQ716d+7cGZ07d8bcuXPFdLqYmBh4eHjYe2hE5OCkn3DmFqotWgNkuJCYbwqIyPl4uCkNgiFWkyNn47B/xfp0ukmTJtl7KETkBMoGQ5bI4+aDROTkPF0VuA0gt8hwnyGVixwKucyOIyOqGnZbMxQdHY3Tp0/b6+GJiAxI0+SyLQ2GpOkiXDNERE7IveSDHnFmqCQo4nohchZ2C4aGDh2Kr7/+2l4PT0Rk4EFmhnINgiG+MSAi56MvDlOk1qJYoxWfH/mcR87CKn/J8fHxFrW7deuWQduwsDBrDIeIqEKeD5ImV8T9NojIuXlInhvzijTih0DccJWchVX+krt16ybuC2SOTCZDdHQ0oqOjxfs0Gk05VxARWY+XJJjJKbTsuSiPM0NE5OQ8XEqfG7Pyi1Gk1m09wO0EyFlY7dXb09MTQ4cOhUJh/J9FEASsWbMGLVq0QPfu3a01BCIiiz3szBDXDBGRM5KWz76dUygec2aInIVV/pI///xzzJ07F5cuXcL333+PNm3aGLVZs2YNevfuXSX72xARPSzpmqEcS9cMSWaQ3F0YDBGR85GWz76dLQ2G+JxHzsEqBRRmzJiBEydOQKPR4LHHHsOnn37KFDgiqtY8DfLiKzcz5OGqgJwlZonICUlnvQ2CIaYGk5OwWjW5Nm3a4OjRo5g9ezb++c9/IiwsDKdOnbLWwxERPRSVZGYnv0hr0TX6NUNMkSMiZyVdD3krm2ly5HysWlpbLpfjww8/xPHjxyGTyRAWFoZZs2ahuLjYmg9LRFRp0oAmv7hy+wyxeAIROStpOhzT5MgZ2WSfofbt2+PYsWP46KOPsHjxYnTq1KnCanNERLYkDYakVeLKU7rfBt8UEJFzcjeTJscPgchZ2GzTVYVCgTlz5iA+Ph4uLi4QBMFWD01EVCF3gzS5ioMhjVZAob7ELNNFiMhJGRRQkFST8+LzHjkJm/8ld+zYEX/88YetH5aIqFzuBmlyFQdDLKtNRDWB9PntjsHMEJ/3yDnYbGaIiKg6k6Z8WJImZ7jhKt8UEJFz8jBTWpszQ+QsGAwREQFQyGVwVeqeEi1Jk5NuzMoSs0TkrKSbrhZptJL7+bxHzoHBEBFRCf26IcvS5CQzQ6yqREROytyHPV583iMnwWCIiKiEPt3Nkk1XDdPk+AkpETknc2nAfN4jZ+GwwZBabdk+IERElnIXgyEL0uRYQIGIagBzz29cM0TOwiH+klNTU3H69GmcOXNG/H7x4kXk5+fbe2hE5ET0aXIFFqTJSdcVcc0QETkrc1sH8EMgchZWewU/fPgwjhw5Ag8PD/Tv3x/Nmzev8Jrc3FycOXPGIOg5c+YM7t27Z9BOEARu2kpEVU7/4l6sEVCs0cJFYX7yXFpAgWuGiMhZuSnlcFXIDYonANxfjZxHlf8lFxcXY9SoUfj555/FjVUVCgUWL16Mt956C4AumLl48aJBwHP69Glcu3bNaDNWU5uzuri4ICQkpKqHTkQ1nLtkhie/WFNuMMTS2kRUE8hkMnirlMjILRLvU8hlcFM67EoLIgNVHgzNnj0bW7duRWBgIL766iv4+vrivffew3vvvYdjx47h0qVL+PPPP1FYWGhwnamgB9D9J+zfvz+eeeYZtGzZEi1btkSzZs0gl/M/IRFVLemLe0GxBj4qF7Ntpal0+vQ6IiJnVDYY8nV3YYYOOY0qD4bWrFkDmUyGf//73xg+fDgAYN26dWjfvj02bdpkMujx9PREmzZt0L59e7Rr1w7t2rVD27Zt0bRpUwDAuHHjMHLkyKoeKhGRAZUkqCks1pbTEihUl553UzIYIiLn5V3mgyFfd/MfFBE5mioPhvTrexo3bizeJz328vLCsGHD0LZtWzH40Qc9RET2pCozM1SeIkkw5Mp0ESJyYt4qw7eLPiquFyLnUeWv4I8//jgA4JtvvhHv0x8LgoDc3FykpqbimWeewcCBAxkIEVG1YTAzpK5oZqg0WGLuPBE5s7Ipwz6cGSInUuWv4F988QU8PT2xdu1atGrVCp07d8b777+P5s2bY+DAgRAEAfv370doaCheeuklXL9+vaqHQET0QMquGSoP0+SIqKYoOzPENDlyJlUeDHXq1AnHjh3DsGHDkJOTg7t37+KVV17B4cOHsWPHDuzduxedOnWCVqvFunXr0Lp1a8ycORP379+v6qEQEVWKdGaooKI1Q5Lzbi6cGSIi58U1Q+TMrPIK3qZNG2zZsgWpqam4evUqvvvuO9SrVw8A8NRTTyExMRGrV69GUFAQCgoKsGTJEgQHB+PLL79EcXGxNYZERFQhlUsl1gxJ9txwLacENxGRo/Nx58wQOS+7vYKPHTsWFy5cwKeffgpvb2/cvXsX7777Llq1aoUff/zRXsMiohpMmu5WqTVDnBkiIicW6KsyuM1giJyJXV/B3dzc8P777+PKlSuYNm0alEol/v77b4wePRphYWH2HBoR1UCVmRkySJPjmiEicmJN6nga3K5fJjgicmTV4uPMOnXq4KuvvsLZs2cxdOhQCIKAxMRE8by+XDcRkTW5SdcMqStTQKFaPJUSEVlFkzoeBrc7NPS100iIql61egUPCQnB1q1bcejQIYSGhor3T506FSNGjEBSUpIdR0dEzq4yBRSKGAwRUQ1Rz9twJqhpmZkiIkdWLV/Be/bsiaNHj2LDhg1o1qwZtFottm7dik6dOuGFF17AuXPn7D1EInJClSutrTsvlwFKFlAgIicml8swtlsTAMCUJ4Mhl8vsPCKiqlOtX8Gff/55nDt3DkuWLIGfnx+0Wi02b96MDh06YMyYMfYeHhE5mcptuqo7z/VCRFQTzB/aHn/M6YeZ/VvbeyhEVapaB0MA4OLignfeeQeXL1/G22+/DRcXF2i1WmzcuNHeQyMiJ6OSzAwVWrjpKivJEVFNUcvD1d5DIKpyDvMqXqtWLXzxxRc4f/48Ro4cCZmMU7REVLUMCihUWE1Od57rhYiIiByXsuIm1UvTpk2xceNGJCQk2HsoRORkDEtrV1BAoWTTVVcGQ0RERA7LYV/FpdXmiIiqgnT9jz7YMUe/zxDXDBERETkuhw2GiIiqmnSWp8jiAgp8GiUiInJUfBUnIirhKimRXV41Oa1WEGeOGAwRERE5Lr6KO5Fff/0VMplM/Jo3b55F1509exavvfYaQkJC4O7ujoCAADzxxBP49ttvoVarLX78jRs3Ijw8HIGBgVCpVGjatCnGjh2Lo0ePWtxHRkYG5s6di44dO8LX1xc+Pj7o2LEj5s6di4yMDIv7IXoQ0pkh/T5CpkhT6LhmiIiIyHE5XAEFMi03NxdTpkyp9HVRUVGYNm0aCgsLxfsKCgoQGxuL2NhYrFq1CjExMahTp47ZPgoKCjBixAjExMQY3H/t2jVcu3YN69evx7x58zB79uxyx5KQkIAhQ4YgLS3N4P7Tp0/j9OnTiIyMxPbt29GlS5dK/5xElnCzME1OOmvENUNERESOix9pOonZs2fj2rVrqFu3rsXX7N69G5MmTUJhYSHq1auHpUuX4tixY/j1118xfPhwAMDRo0cxfPhwaLXm3xhOmDBBDIT69OmDbdu2IT4+HlFRUQgODoZWq8WcOXMQGRlpto/U1FREREQgLS0NSqUSM2bMwKFDh3Do0CHMmDEDSqUSN27cwKBBg5Cammrxz0hUGdI0ufIKKEhnjZgmR0RE5Lj4Ku4ETpw4gaVLl8LNzQ2ffPKJRdeo1Wq8/vrr0Gq18PHxweHDh/GPf/wDYWFh6N+/P3766SdMnToVAHDo0CGsXbvWZD8HDx7E+vXrAQARERHYs2cPhgwZgtDQULzyyis4evQoGjduDACYMWMG7t27Z7Kfjz76COnp6QCA9evXY+HChejVqxd69eqFhQsXio+Rnp5e4QwT0YOSy2VwUej2MCt3ZkhSdlu6NxERERE5FgZDDk6j0WDixInQaDT48MMP0aJFC4uu+/nnn3H58mUAwAcffIDg4GCjNosXL4afn594bMqiRYsAAAqFAsuWLYNCYfjG0N/fHwsXLgQAZGZmIioqyqiP9PR0MdgKDw/HiBEjjNqMGDEC4eHhAIA1a9aIgRNRVdPPDpUXDElnjTgzRERE5Lj4Ku7g/v3vf+PEiRNo2bIlZs6cafF127ZtE49ffvllk208PDwwcuRIAEBSUhIuXbpkcD4nJwf79u0DAPTr1w+NGjUy2c/w4cPh4+MDANi6davR+ejoaGg0urSj8ePHmx2zfpwajQbR0dFm2xE9DH1BhHLT5IpZQIGIiMgZWPVV/Ny5c9ixYweuXLki3qfVavHtt99i1KhRGDt2LDZs2GDNITi1v//+G3PnzgUALFu2DG5ubhZfGxsbCwBo1aoV6tevb7Zd7969xeO4uDiDc/Hx8WLhBWm7slxdXdGtWzfxmuLiYpNjqaif8sZCVFXEYKjcAgpcM0REROQMrPYq/tprr6F9+/YYOnQoWrVqhfnz5wPQpTtNmTIFP/74I9atW4cXX3wRzz//vLWG4dSmTJmCvLw8jBkzBn379rX4upycHKSkpAAAWrduXW5b6flz584ZnJPetrQftVptNMOk78fX17fcwCwwMFCcYSo7FqKqYlkwxGpyREREzsAqpbW3bt2KFStWoG3btggPD8e+ffswb948eHp6YufOnVi0aBGeeeYZpKam4sMPP8SWLVuwadMmMSWLKrZ+/Xrs2rULtWrVwhdffFGpa1NSUiAIAgCYTW3TCwoKEo+Tk5MNzklvV7aftm3bGvVTUR/6fs6ePWs0lorogz9zypbzpprLkjVDhsEQZ4aIiIgclVWCoa+//hr16tXDsWPH4OnpiYKCArRq1Qoffvgh/vnPf+K9994DADzyyCPo2rUrmjZtitWrVzMYstDdu3fx9ttvAwA+++wz1KtXr1LXZ2dni8deXl7ltvX09BSPc3JyrNpPRX1I+ynbR0WkwRhReVxLZnoKy1kzJA2UuGaIiIjIcVnlVfzChQuIiIgQ37iqVCoMGDAAxcXFeOGFFwza1q5dGwMHDsSJEyesMRSn9N577+HWrVvo2rUrJk2aVOnrCwoKxGNXV9dy20rXIeXn51u1n4r6kPZTtg+iqiJNk9PPoJbFNUNERETOwSozQ3fu3DHa/FN/29Qn9E2aNMHdu3etMRS7UavVcHFxeeh+Vq5caVDt7cCBA1i5ciUUCgWWL18Oubzyb8RUKpV4XFRUVG5bfYEEAHB3d7daP3l5eRX2Ie2nbB8VqSitLi0tDWFhYZXqk5yTm2Tj1WKNAFelzKgN9xkiIiJyDlYJhvz8/IyCG5lMBkEQIJMZv7HIzc2Fh4eHNYbiVAoLCzF58mQAwBtvvIFOnTo9UD/e3t7icUXpZrm5ueJx2TS2quwnLy/PotQ3fT+WpNRJWbIeiQgwTHsr0mhNpsFxzRAREZFzsEow1KxZM3FDT723337b7B4y165dQ4MGDawxFLtRKpVVUvEsMDBQPN66dSsuXrwIpVKJtm3bYuPGjUbt//zzT/E4KSlJbNO1a1c0a9YMgGFgUFFhAemMStlZvbL9dOnS5YH7SU9Pr3As0n64BoisRRrcFKm1gImK9UVMkyMiInIKVgmGunTpglWrVkGr1YppXL6+vvD19TVqm5WVhf379ztl8YSKyk1Xlj5FTK1WY+LEiRW2/+mnn/DTTz8B0KXb6YMhLy8vBAUFITk5GefPny+3D+n5Nm3aGJyTVoSztB+lUomQkBCjfhITE3H//n3cvHnTbHnttLQ0ZGVlmRwLUVVxLRsMmcCZISIiIudglVfx+fPn4+TJkyZT4sq6evUqXn31VUyYMMEaQyEzevbsCUBX7OLmzZtm2x08eFA87tGjh8G50NBQseiBtF1ZRUVFOHr0qNE1ZcdSUT/ljYWoqlQ+GOKaISIiIkdllWDI19cXwcHBFgVDHTt2xL///W90797dGkNxKi+//DIEQSj3a//+/WL7uXPnivdLizAAwNChQ8XjVatWmXy8vLw8bNq0CYBu9qZly5YG5729vcXNXvfu3Ws2zW3r1q3ijM6wYcOMzg8ePFicQVy5cqXZn18/TrlcjsGDB5ttR/QwXBXSNUMak21YTY6IiMg58FW8hho2bBiCg4MB6PYqunLlilGb6dOnIzMzUzw2Rb9nlFqtxrRp06Ap8+bxzp07mDlzJgCgVq1aePXVV436qF+/PsaMGQMA2L17N7Zs2WLUZvPmzdi9ezcAYOzYsWZT6YgelnRmqNDMzJB0xsjNhU+jREREjoqv4jWUi4sLli5dCrlcjqysLPTo0QP//e9/ER8fj927d+O5557DsmXLAOjS2MaOHWuyn6eeekrcOyo6Ohr9+vVDdHQ0jh8/jpUrV6Jbt264fv06AODzzz+Hn5+fyX4WLFiAgIAAAMCoUaPw/vvvIy4uDnFxcXj//fcxevRoAEBAQAA++eSTKv1dEEm5lCmtbYo0GJK2JyIiIsdilQIK5Tl06BDq169vlHJFtjdgwAAsX74cr7/+OtLT0/GPf/zDqE1YWBh+/vlnKBTm10V8//33yMrKwi+//IL9+/cbpOoBurS22bNni2XBTQkKCsKOHTswdOhQ3Lx5EwsXLsTChQsN2tSvXx/btm1jmWyyKunMkFpjemaoWFsaJCkfYK8vIiIiqh5s/ir+5JNPGr3JJfuZOHEiEhMTMXHiRDRv3hwqlQp16tRBz5498c033+Dw4cPw9/cvtw93d3fs3LkT69atQ79+/VC3bl24uroiKCgIo0ePRlxcHObNm1fhWLp27YozZ85g1qxZaN++Pby8vODl5YUOHTpg1qxZSEpKQteuXavoJycyTSkvXetYZCYYkgZJLoqK10YSERFR9WTzmSEAEATTqSf08J588slK/37bt2+PFStWPPRjjx49Wkxne1D+/v6YP38+5s+f/9DjIXoQlqTJSe9XMk2OiIjIYfFVnIhIQpomV2ymgEKxZGZIOpNEREREjoXBEBGRhDS4UWvNpcmVzgyxgAIREZHj4qs4EZGEi8E+Q6bT5KRBEtcMEREROS4GQ0REEi4WpclxzRAREZEz4Ks4EZGEq2Smp9hcNTnODBERETkFBkNERBLSfYOk+wlJGcwMcZ8hIiIih8VXcSIiCUvS5LjPEBERkXNgMEREJGFZmpxuZkghl0EmYzBERETkqBgMERFJGKTJmQmG9Gly3GOIiIjIsdk8GKpduza8vb1t/bBERBYxSJMzU1pbHyRxjyEiIiLHprT1A965c8fWD0lEZDEXS9LkSu5Xcr0QERGRQ+PHmkREEtLZnorT5PgUSkRE5Mj4Sk5EJGEYDJlOk9PvM8RKckRERI6NwRARkYRlaXIlM0MMhoiIiByazdcM6Wk0Ghw4cABxcXE4d+4ckpOTkZOTg/z8fLi7u8PLywtBQUFo06YNevTogT59+kChUNhruERUQ7halCbHAgpERETOwObBUF5eHv71r3/hyy+/RGZmptF5QRDEfTuOHj0q3l+rVi289dZbeOedd+Dp6Wmz8RJRzaK0KE1Od78L1wwRERE5NJsGQ1evXsWgQYNw/vx5CILhmwxPT094enrCzc0NhYWFyM3NRW5urng+MzMT8+bNw4YNG7Bz5040a9bMlkMnohqCaXJEREQ1h82Cofz8fAwYMAAXL16EIAho06YNXnrpJfTu3RutW7dGrVq1jK65d+8ezp8/j4MHD2LNmjU4d+4czp8/j4EDB+LEiRNQqVS2Gj4R1RAVpckJgoBirb60NmeGiIiIHJnNXsmXLVuGCxcuAAAWL16MpKQkzJw5E926dTMZCAG61Lhu3bph5syZSEpKwsKFCwEAFy5cwNdff22roRNRDVJRmpxGK0A/se0i58wQERGRI7NZMLRp0ybIZDJMnDgR7777rrguyFIymQzTp0/HxIkTIQgCNm3aZKWRElFNVlGanH69EMA0OSIiIkdns2Do8uXLAIAXXnjhofoZNWqUQX9ERFVJWiGuSG0cDEkDJFaTIyIicmw2eyUvLCwEALi7uz9UP/rri4qKHnpMRERlKSWpbxqtcZqcWpI6p2SaHBERkUOzWTDUuHFjAMCBAwceqp/9+/cDABo1avSwQyIiMqKQBDjFJoIhffEEgAUUiIiIHJ3NXskHDBgAQRDw6aefIj4+/oH6OHbsGD799FPIZDIMHDiwikdIRKRbn6hfN6Q2tWZIMjPkwjVDREREDs1mwdCbb74JX19f5OTkoFevXpg2bRoSEhKg1Zrex0NPq9UiISEBU6dOxRNPPIGcnBz4+PjgzTfftNHIiaim0c8OVZwmx5khIiIiR2azfYaCgoKwdu1aPP/888jLy8Py5cuxfPlyeHp6IiQkBI0aNYKXlxdcXV1RVFSEnJwcpKSk4PLly+Lmq4IgwN3dHWvXrkVQUJCthk5ENYyLXI4CaE1WkzNMk+PMEBERkSOzWTAEAAMHDsThw4fx1ltv4eDBgwCAnJwcnDp1CqdOnTJ5jSCUfgrbq1cv/Oc//0GnTp1sMVwiqqH0QY66gpkhV64ZIiIicmg2DYYAoGPHjti/fz+OHz+Obdu2ITY2FufOncOdO3eM2vr7+6NNmzbo2bMnhg4ditDQUFsPl4hqIEVJ+pvaxKar0tkizgwRERE5NpsHQ3pdunRBly5dxNuFhYXIzs5GQUEBVCoVvL294ebmZq/hEVENJhZQMLGm0SAY4pohIiIih2a3YKgsNzc3Bj9EVC3oZ3xMFlDQspocERGRs+DHmkREZehnfIorTJPjUygREZEj4ys5EVEZSrmF+wzJOTNERETkyBwuGFq9ejUUCgWUymqT4UdETka/z5DJanJazgwRERE5C4eMKKTltomIqppLSZBjKhiSps6xmhwREZFj48eaRERlSAsolP3wxTBNjk+hREREjoyv5EREZSgla4HKzg4ZpslxZoiIiMiR2SxN7pVXXqmSfi5fvlwl/RARmSPdP0itEeCiKD1nmCbHz5OIiIgcmc2CoVWrVkEm46eoRFT9SWd8irVauKM0GpJWmHPlzBAREZFDs3kBBRY/IKLqTpompymz15DBPkNcM0REROTQbBYM1alTB3fv3kV4eDiWL1/+wP1s2bIF06dPr8KREREZkqa/FWsN9xpiNTkiIiLnYbNgKDQ0FLt27cK5c+fQpEmTB+7H39+/CkdFRGTMRRLkaMopoODCNUNEREQOzWav5KGhoQCA5ORk3L5921YP6/SKi4uxatUqDBw4EI0bN4abmxv8/f3RoUMHvPrqq9i8eXOFfZw9exavvfYaQkJC4O7ujoCAADzxxBP49ttvoVarLR7Lxo0bER4ejsDAQKhUKjRt2hRjx47F0aNHLe4jIyMDc+fORceOHeHr6wsfHx907NgRc+fORUZGhsX9ED0MRZkCClIGM0NyzgwRERE5MpvNDIWFhYnHCQkJGDBggK0e2mmdPn0aY8aMQVJSksH9GRkZyMjIQFJSErZs2YIRI0aY7SMqKgrTpk1DYWGheF9BQQFiY2MRGxuLVatWISYmBnXq1DHbR0FBAUaMGIGYmBiD+69du4Zr165h/fr1mDdvHmbPnl3uz5OQkIAhQ4YgLS3N6Oc8ffo0IiMjsX37dnTp0qXcfogeloskyJGuEQLK7DPEmSEiIiKHZrNXcn0wJAgCEhISHrifkJAQjBs3Di+99FJVDc0hnT59Gn369EFSUhJcXV0xefJkbNu2DcePH8fevXsRFRWF0aNHw8fHx2wfu3fvxqRJk1BYWIh69eph6dKlOHbsGH799VcMHz4cAHD06FEMHz4c2jLrJqQmTJggBkJ9+vTBtm3bEB8fj6ioKAQHB0Or1WLOnDmIjIw020dqaioiIiKQlpYGpVKJGTNm4NChQzh06BBmzJgBpVKJGzduYNCgQUhNTX3A3xqRZZQWpslxzRAREZGDE8jh5OfnCy1bthQACIGBgcKZM2fMti0sLDR5f3FxsRASEiIAEHx8fITLly8btZk6daoAQAAgrF692mQ/Bw4cENtEREQIarXa4Pzt27eFxo0bCwAEPz8/ITMz02Q/48aNE/vZtGmT0flNmzaJ58ePH2/2531QycnJYv/JyclV3j85lvd/Oi00mRkjNJkZI5xNvW9w7rNfzonnfr98x04jJCIiqnms8X6NOR4OaMmSJbh48SIAYP369Wjfvr3Ztq6uribv//nnn8UNbD/44AMEBwcbtVm8eDH8/PzEY1MWLVoEAFAoFFi2bBkUCoXBeX9/fyxcuBAAkJmZiaioKKM+0tPTsXbtWgBAeHi4ybS+ESNGIDw8HACwZs0apKenmxwPUVWQFlBQa8umyWlNtiMiIiLHw2DIwWg0GrE0+ZNPPoknn3zygfrZtm2bePzyyy+bbOPh4YGRI0cCAJKSknDp0iWD8zk5Odi3bx8AoF+/fmjUqJHJfoYPHy6m623dutXofHR0NDQaDQBg/PjxZsesH6dGo0F0dLTZdkQPSyGXBkNl0+SkpbX5FEpEROTI+EruYH7//XdxzYx0BiUvLw+XL19GWlpauet79GJjYwEArVq1Qv369c226927t3gcFxdncC4+Pl4svCBtV5arqyu6desmXlNcXGxyLBX1U95YiKqStDCCcTU56aarnBkiIiJyZAyGHIy0TPXjjz+O+Ph4hIeHw9vbGy1atECDBg0QEBCAV199FdeuXTPZR05ODlJSUgAArVu3LvfxpOfPnTtncE5629J+1Gq10QyTvh9fX99yA7PAwEBxhqnsWIiqkjTIUWvKbrrKfYaIiIichc1Ka1PV+PPPP8Xjo0eP4o033jDaC+ju3buIiorCTz/9hO3bt+OJJ54wOJ+SkgJB0H3abS61TS8oKEg8Tk5ONjgnvV3Zftq2bWvUT0V96Ps5e/as0Vgqog/+zClbzptqNmV5aXIGpbU5M0REROTIGAw5mLt374rHb7/9NjQaDWbMmIHJkyejUaNGSE5OxvLly/HFF1/g3r17GD58OE6dOoWGDRuK12VnZ4vHXl5e5T6ep6eneJyTk2Nwrqr7qagPaT9l+6iINBgjqoh0LVDZAgrFWu4zRERE5Cz4Su5gcnNzxePCwkIsWrQICxcuRPPmzeHq6org4GAsXrwYCxYsAKDbgPWzzz4z6KOgoEA8NldtTs/NzU08zs/Pt2o/FfUh7adsH0RVSbp/ULGm7MwQ9xkiIiJyFgyGrEStVkMmkz3016pVqwz6ValU4nGjRo3w9ttvm3z86dOnIzAwEACwceNGMS2ubB9FRUXl/hz6AgkA4O7ubnYsVdFPRX1I+ynbR0WSk5PL/YqPj69Uf+TcFLLSIEerLVtAQVJNTs6nUCIiIkfGNDkH4+3tLR7369fPaF8fPaVSiaeeegrr1q1DRkYGrl69iubNmxv1UVG6mXQmqmwaW1X2k5eXZ1Hqm74fS1LqpCxZj0SkV15pba0gDYY4M0REROTIGAxZiVKprJKKZ/rZHT3p2pfKFC24deuWGAxJr6uosIC0UEHZdTdl++nSpcsD95Oenl7hWKT9cA0QWZM0yJEGP4BhcCRnMEREROTQGAxZUUXlph9Eu3btxGP9RqXmSM8rlaX/1F5eXggKCkJycjLOnz9fbh/S823atDE4J60IZ2k/SqUSISEhRv0kJibi/v37uHnzptny2mlpacjKyjI5FqKqZDAzVGbNkDRtTsFgiIiIyKHZLOE9MTHRVg/l1KRlsq9cuVJuW+l5aTU5AOjZsycA4MKFC7h586bZPg4ePCge9+jRw+BcaGioWPRA2q6soqIicX8k6TVlx1JRP+WNhagqKSRrgTRlZoY00mBIxmCIiIjIkdksGAoNDUWjRo0wefJkxMTEGFQiI8s1a9YMjz76KABg9+7dyMvLM9kuOzsbe/bsAQAEBwcbpdsNHTpUPC5bpEEvLy8PmzZtAqCbvWnZsqXBeW9vb/Tt2xcAsHfvXrNpblu3bhVndIYNG2Z0fvDgwZCXvPlcuXKlyT6k45TL5Rg8eLDZdkQPS1oxW6MtJxjizBAREZFDs2kppBs3biAyMhJDhgxBnTp1EBERgRUrVuDGjRu2HIbDe//99wEA9+7dw7vvvmuyzdtvvy3u3/Paa68ZnR82bBiCg4MBAJ999pnJWabp06cjMzNTPDblvffeA6Crnjdt2jSj1L07d+5g5syZAIBatWrh1VdfNeqjfv36GDNmDABdgLdlyxajNps3b8bu3bsBAGPHjjWbSkdUFQxmhsoGQwKDISIiImdhs2AoJSUFy5cvx4ABA6BSqZCfn4+dO3diypQpCAoKQufOnTFv3jym01lg5MiRGDBgAABg+fLlGDRoEKKjo3Hy5Els374dzz77LKKiogAAjz76KF5//XWjPlxcXLB06VLI5XJkZWWhR48e+O9//4v4+Hjs3r0bzz33HJYtWwZAl8Y2duxYk2N56qmn8MILLwAAoqOj0a9fP0RHR+P48eNYuXIlunXrhuvXrwMAPv/8c/j5+ZnsZ8GCBQgICAAAjBo1Cu+//z7i4uIQFxeH999/H6NHjwYABAQE4JNPPnnQXx2RRSydGWIsRERE5NhkglAmId4G8vPzsXfvXsTExGDnzp3izJCsJP++fv36GDhwICIiIvD0009Xek+ZmiAnJwf/93//h99++81sm9DQUERHR5c7i/Ldd9/h9ddfN7vHT1hYGHbu3Al/f3+zfeTn5+O5557DL7/8YvK8XC7H7NmzMW/ePLN9AMCxY8cwdOhQs2uY6tevj23btqFr167l9vMgUlJSxAp1ycnJLMVdw0WfuoE3NpwEAMwZ1Bav9Gwmnhv83zicTrkPhVyGK58OsNcQiYiIahxrvF+zy46B7u7uiIiIwLfffouUlBQkJCRgzpw5ePTRRyEIAtLS0hAVFYWhQ4fC39+f6XQmeHl5Yffu3diwYQP69++P+vXrw8XFBQEBAejXrx++//57HDlypMJ0sokTJyIxMRETJ05E8+bNoVKpUKdOHfTs2RPffPMNDh8+XG4gBOj+PXfu3Il169ahX79+qFu3LlxdXREUFITRo0cjLi6uwkAIALp27YozZ85g1qxZaN++Pby8vODl5YUOHTpg1qxZSEpKskogRFSWtDBC2ZkhfXU5Fk8gIiJyfHaZGSrPjRs3EBMTgx07duB///sf8vPzAZTOGnXq1AkRERGIiIhA586d7TlUciKcGSKpXUk38dpaXcru+8+2xmu9g8Vz/b88hPM3s6FykeP8/GftNUQiIqIax2lmhsrToEEDTJo0CTt27EBGRgaio6MxceJEBAYGQhAEnDx5EvPnz0dYWBgaNmyIyZMn49SpU/YeNhE5EWlhBHNrhjgzRERE5Piq9aarKpUKgwYNwqBBgwDo9irSzxqdPHkSaWlpiIyMRMOGDdGxY0c7j5aInIWynE1XxWCI1ROIiIgcXrUOhsrq3LkzOnfujLlz54rpdDExMfDw8LD30IjIiRjMDJXddFVgMEREROQsHCoYktKn002aNMneQyEiJ2OYJqc1OMeZISIiIudR7dYMERHZm2EwZHhOy2CIiIjIaTAYIiIqo7yZITULKBARETkNBkNERGWUOzNUsmZIzpkhIiIih8dgiIioDMNNV7lmiIiIyFkxGCIiKqO8anJqBkNEREROg8EQEVEZ5W26quWaISIiIqfBYIiIqIxyN13lPkNEREROg8EQEVEZ8vI2XWWaHBERkdNgMEREVIaynDQ5BkNERETOQ2nvAejduXMHqampuH37NjIyMuDu7o6AgAAEBASgefPmkMsZtxGRbZhbMyQIAvQ35VwzRERE5PDsFgxlZ2dj+/btOHDgAGJjY3H58mWzbT09PdGtWzf06tULAwcOxGOPPWbDkRJRTWMuGJJOEnFmiIiIyPHZPBhKTEzEf/7zH/z0008oKCgAoPu0tTw5OTnYt28f9u3bh3nz5qFVq1aYNm0aXn75ZXh6etpi2ERUg5gLhtSSPYcYDBERETk+mwVDiYmJmDVrFn777TcApQFQYGAgQkND0blzZ9StWxe1a9eGn58f8vPzcffuXWRmZuLixYtISEjA6dOnUVxcjPPnz+ONN97AvHnzMH36dLz55ptwc3Oz1Y9CRE7OcNNVycyQ1nQbIiIickw2CYbGjx+PH374AdqSdxKPPfYYxowZg//7v/9D48aNLe6nqKgIhw4dwvr16/Hzzz8jIyMDH3zwAb755hv88MMP6Nmzp7V+BCKqQZSSNYrSanLSY84MEREROT6bVCVYvXo1lEolJk6ciPPnz+P48eN4++23KxUIAYCrqyuefvppfP/997h58ybWrFmDVq1a4dq1a/jf//5npdETUU0jrdcinRnSaBgMERERORObzAxNmTIFH3zwARo1alRlfbq5ueHFF1/EmDFjsHnzZmg0mirrm4hqNoOZIS1nhoiIiJyVTYKhr7/+2mp9y2QyjBw50mr9E1HNI50ZUkuDIckxS2sTERE5Pm7eQ0RUhrmZIa1kZkjJmSEiIiKHx2CIiKgMaZxjWFqbaXJERETOhMEQEVEZMplMDHYMS2tL0uQYDBERETk8mwRDCQkJCA8Ph4+PD7y8vNC2bVu89tpr+P33323x8ERElWYqGJIeKxgLEREROTyrB0Px8fF44oknsGfPHvj6+iI4OBgZGRlYsWIFevXqhVGjRqGwsNDawyAiqhT9pqrm0+Q4sU5EROTorP5qPnv2bMhkMuzZswfJyck4deoU0tPTcebMGYwZMwY//vgjhgwZYu1hEBFVir5AgrScttagtLbNh0RERERVzOov50eOHMELL7yAvn37Gtzfrl07rFmzBl988QV+++03REZGWnsoREQWk1eUJsc1Q0RERA7PJp9t1q1b1+y5t99+G6GhoVi5cqUthkJEZBElgyEiIiKnZ/VgqHXr1jh27Fi5bZ588kn8+eef1h4KEZHFKpwZ4qarREREDs/qwdDYsWNx6NAhrF271mybe/fuoaioyNpDISKymMmZIYGltYmIiJyJ1YOhqVOnIjQ0FC+//DLefvttJCcnG5w/e/YsfvzxRzz66KPWHgoRkcXkJTM/ajP7DHFmiIiIyPEprf0ACoUCu3fvxpAhQ/Cf//wHX3/9NZo3b47GjRsjMzMTp06dglarxaxZs6w9FCIiiykV+pkhrXifQWltbjRERETk8GxSQMHX1xcHDhzAunXr0Lt3byQnJ2Pv3r1ITExEmzZtsHXrVvTv398WQyEisoipfYY4M0RERORcrD4zJDVq1CiMGjUKWq0Wd+/ehUqlgpeXly2HQERkEUUFa4ZYTY6IiMjx2TQY0pPL5fD397fHQxMRWURhYtNVltYmIiJyLtxDnYjIBJMzQ0yTIyIicip2mRkCAI1GgwMHDiAuLg7nzp1DcnIycnJykJ+fD3d3d3h5eSEoKAht2rRBjx490KdPHygUCnsNl4hqmIo2XWVpbSIiIsdn82AoLy8P//rXv/Dll18iMzPT6LwgCJCVfOJ69OhR8f5atWrhrbfewjvvvANPT0+bjZeIaiZ9sKMVSp+XtFwzRERE5FRsGgxdvXoVgwYNwvnz5yFI3lQAgKenJzw9PeHm5obCwkLk5uYiNzdXPJ+ZmYl58+Zhw4YN2LlzJ5o1a2bLoRNRDaOUBDsarQClQmZQWlvJYIiIiMjh2SwYys/Px4ABA3Dx4kUIgoA2bdrgpZdeQu/evdG6dWvUqlXL6Jp79+7h/PnzOHjwINasWYNz587h/PnzGDhwIE6cOAGVSmWr4RNRDSOXrAlSawUoFWXS5LhmiIiIyOHZrIDCsmXLcOHCBQDA4sWLkZSUhJkzZ6Jbt24mAyFAlxrXrVs3zJw5E0lJSVi4cCEA4MKFC/j6669tNXQiqoGUkk1V9elxTJMjIiJyLjYLhjZt2gSZTIaJEyfi3XffFdcFWUomk2H69OmYOHEiBEHApk2brDRSx/Hbb79h1KhRaN68OTw8PKBSqRAUFIShQ4di06ZNRqmI5pw9exavvfYaQkJC4O7ujoCAADzxxBP49ttvoVarLR7Pxo0bER4ejsDAQKhUKjRt2hRjx441WPtVkYyMDMydOxcdO3aEr68vfHx80LFjR8ydOxcZGRkW90P0sMrODAGARlt6nsEQERGR47NZmtzly5cBAC+88MJD9TNq1Ch89913Yn81UVFREcaOHWsyIExJSUFKSgq2b9+Ob775Btu2bYOvr6/ZvqKiojBt2jQUFhaK9xUUFCA2NhaxsbFYtWoVYmJiUKdOHbN9FBQUYMSIEYiJiTG4/9q1a7h27RrWr1+PefPmYfbs2eX+XAkJCRgyZAjS0tIM7j99+jROnz6NyMhIbN++HV26dCm3H6KqYLBmSKMPhkqjIQZDREREjs9mM0P6N9vu7u4P1Y/++qKioocek6N66623xECobt26WLJkCf73v/8hNjYWy5YtQ5MmTQAABw4cwOjRo832s3v3bkyaNAmFhYWoV68eli5dimPHjuHXX3/F8OHDAegq+g0fPhxayZvAsiZMmCAGQn369MG2bdsQHx+PqKgoBAcHQ6vVYs6cOYiMjDTbR2pqKiIiIpCWlgalUokZM2bg0KFDOHToEGbMmAGlUokbN25g0KBBSE1NrfTvjKiyFPLSp0f9xqsGM0NcM0REROT4BBtp06aNIJfLhc8///yh+vnss88EmUwmtG7duopG5ljS09MFuVwuABD8/PyE5ORkozb3798XmjZtKgAQAAiJiYlGbYqLi4WQkBABgODj4yNcvnzZqM3UqVPFPlavXm1yPAcOHBDbRERECGq12uD87du3hcaNG4vjzczMNNnPuHHjxH42bdpkdH7Tpk3i+fHjx5vs42EkJyeL/Zv6nVLNM2lNgtBkZozQZGaMcPN+viAIgrDmyN/ifZuP8++EiIjIlqzxfs1mM0MDBgyAIAj49NNPER8f/0B9HDt2DJ9++ilkMhkGDhxYxSN0DEePHhVnacaPH49GjRoZtfHx8cHbb78t3v7999+N2vz8889iquEHH3yA4OBgozaLFy+Gn5+feGzKokWLAAAKhQLLli0z2hjX399fLHyRmZmJqKgooz7S09Oxdu1aAEB4eDhGjBhh1GbEiBEIDw8HAKxZswbp6ekmx0NUVZTSmSH9miHJ1BBLaxMRETk+mwVDb775Jnx9fZGTk4NevXph2rRpSEhIKDf9CgC0Wi0SEhIwdepUPPHEE8jJyYGPjw/efPNNG428epGmBzZv3txsO2lwI10PpLdt2zbx+OWXXzbZh4eHB0aOHAkASEpKwqVLlwzO5+TkYN++fQCAfv36mQzMAGD48OHw8fEBAGzdutXofHR0NDQaDQBdgGeOfpwajQbR0dFm2xFVBXmZfYYAQCOYPk9ERESOyWYFFIKCgrB27Vo8//zzyMvLw/Lly7F8+XJ4enoiJCQEjRo1gpeXF1xdXVFUVIScnBykpKTg8uXL4uargiDA3d0da9euRVBQkK2GXq20bNlSPP7rr7/Mtrty5YrJa/RiY2MBAK1atUL9+vXN9tO7d298++23AIC4uDi0aNFCPBcfHy8GWr179zbbh6urK7p164bffvsN8fHxKC4uhouLi9FYKupHei4uLg4TJ04025boYZXddBUAtJJ9hrhmiIiIyPHZLBgCgIEDB+Lw4cN46623cPDgQQC62YVTp07h1KlTJq8RJOWhe/Xqhf/85z/o1KmTLYZbLT3yyCN4/PHHceTIEaxatQrvvvsuGjRoYNAmOzsbX375JQCgadOmeOaZZwzO6wNNAGjdunW5jyc9f+7cOYNz0tuW9PPbb79BrVbj0qVLaNu2rVE/vr6+5QZmgYGB8PHxQVZWltFYKqL/ec0pW8GOyGRpbe4zRERE5FRsGgwBQMeOHbF//34cP34c27ZtQ2xsLM6dO4c7d+4YtfX390ebNm3Qs2dPDB06FKGhobYebrX0/fffo3///rh27Roee+wxzJgxA4899hiUSiWSkpKwaNEiXL16FXXq1MG6devg5uZmcH1KSooYZJpLbdOTzsAlJycbnJPermw/0mBI309Ffej7OXv2rNFYLLmOqDKkM0NasZocgyEiIiJnYvNgSK9Lly4G+8UUFhYiOzsbBQUFUKlU8Pb2NnoTTzqtW7fG8ePHsWzZMixevBjvvvuuwXkXFxe8++67eOONN9C4cWOj67Ozs8VjLy+vch/L09NTPM7JybFqPxX1Ie2nbB9EVU26JkitMRUM2XxIREREVMXsFgyV5ebmxuCnEn755Rf8+OOPJoOC4uJibNmyBYGBgXjnnXcgK7O2oaCgQDx2dXUt93Gk/yb5+flW7aeiPqT9lO2jIhXNJKWlpSEsLKxSfZJzq2hmSM41Q0RERA6Pn21aiVqthkwme+ivVatWGfX93nvvYdy4cfjzzz8xdOhQHD58GDk5OcjPz8eJEycwfvx4XLt2De+99x6ef/55o4p9KpVKPK5o81ppJbqyG+ZWdT+WbKT7oJv3NmrUqNyvwMDASvVHzk+aBieuGZIEQ9LS20REROSY+GruYGJiYvDFF18A0JWa/vnnn9G9e3d4enpCpVLh0Ucfxffff4/Zs2cDADZv3oxvvvnGoA9vb2/xuKJ0M30lP8A4ja2q+7Ek9U3fjyUpdUQPQ2FQTU73gYK0gAJjISIiIsdnlzQ5rVaL8+fPo7CwEC1atDD5xjYpKQkrV67E+fPnoVQq0axZMwwaNAhPP/20HUZceUqlstIVz0wpO2Mh3bT0k08+MXvdhx9+iH//+9/IyclBZGQkpk2bJp6TFiqoqMqaNL2sbBGCsv1I14BVtp/09PQKxyLthwURyNoMS2vrvrO0NhERkXOxeTD0xRdf4LPPPkNmZiYAQCaTYdSoUfjiiy9Qt25dAMDSpUvx7rvvGqV3ffXVV3j66aexadMm+Pr62nrolVZRuekHoQ+w6tWrh4YNG5ptp1Kp0K5dOxw7dgznz583OOfl5YWgoCAkJycbnStLer5NmzYG56QV4SztR6lUIiQkxKifxMRE3L9/Hzdv3jRbXjstLQ1ZWVkmx0JU1QwKKOhnhqRpcgoGQ0RERI7Opoke7733HmbMmIHMzEwIggBBEKDVarF+/XoMGDAA+fn5+OWXX/D2229Do9GIbaRfe/fuxYgRI2w57GpFqdTFr2q1usK2xcXFBtdI9ezZEwBw4cIF3Lx502wf+v2gAKBHjx4G50JDQ8WiB9J2ZRUVFeHo0aNG15QdS0X9lDcWoqpmUECh5HMZNQsoEBERORWbBUPHjh3Dv/71LwC6N+fDhg3De++9h2HDhsHFxQUnT57EihUr8PHHH0MQBPTp0wdxcXHIz89HVlYWoqOj0bZtWwiCgH379mHHjh22Gnq10qxZMwBARkZGuWl4d+/eRVJSksE1UkOHDhWPTRVpAIC8vDxs2rQJgG72pmXLlgbnvb290bdvXwDA3r17zaa5bd26VZzRGTZsmNH5wYMHQ16yAGPlypVmfyb9OOVyOQYPHmy2HVFVMNx0VRcNabnpKhERkVOxWTC0YsUKALp9Yo4cOYKffvoJixYtwk8//YQjR47Ay8sLCxcuxPHjx9GrVy/s2bMH3bt3h5ubG7y8vDBo0CDExsaK++asX7/eVkOvViIiIsTjt956y2QFNq1WizfffFM8N2jQIKM2w4YNQ3BwMADgs88+w5UrV4zaTJ8+XUxnnD59usnxvPfeewB0M1XTpk2DRqMxOH/nzh3MnDkTAFCrVi28+uqrRn3Ur18fY8aMAQDs3r0bW7ZsMWqzefNm7N69GwAwduxYs6l0RFWFpbWJiIicn82CocOHD0Mmk+Hdd9/FY489ZnDu0UcfxTvvvCOma82ZM0ecKZDy8/PDm2++CUEQkJCQYJNxVzcvv/yyuBbpt99+Q5cuXfDdd98hPj4eiYmJ+OGHH9CzZ0+sXbsWgG5t0TvvvGPUj4uLC5YuXQq5XI6srCz06NED//3vfxEfH4/du3fjueeew7JlywDo0tjGjh1rcjxPPfUUXnjhBQBAdHQ0+vXrh+joaBw/fhwrV65Et27dcP36dQDA559/Dj8/P5P9LFiwAAEBAQCAUaNG4f3330dcXBzi4uLw/vvvY/To0QCAgICAcgtHEFWVijZd5ZohIiIix2ezAgqpqakADNeHSEnv79q1q9l+Hn/8cQAod52LM3N1dcWuXbswZMgQnDp1CmfOnMGkSZNMtm3WrBm2bt0Kf39/k+cHDBiA5cuX4/XXX0d6ejr+8Y9/GLUJCwvDzz//DIVCYXZM33//PbKysvDLL79g//792L9/v8F5uVyO2bNnY/LkyWb7CAoKwo4dOzB06FDcvHkTCxcuxMKFCw3a1K9fH9u2bTOoYkdkLRXNDLGaHBERkeOz2cyQfjG/dG8aKWl5belmnmXpz1lSQMBZNWnSBAkJCVizZg0GDx6MRo0awc3NDa6urqhfvz6eeeYZLFu2DGfOnEGnTp3K7WvixIlITEzExIkT0bx5c6hUKtSpUwc9e/bEN998g8OHD5sNpvTc3d2xc+dOrFu3Dv369UPdunXh6uqKoKAgjB49GnFxcZg3b16FP1fXrl1x5swZzJo1C+3bt4eXlxe8vLzQoUMHzJo1C0lJSeUGykRVyeSmqwb7DDEYIiIicnQ2mxmqXbs20tPTceHCBYSFhRmdv3jxonj8119/GS3Wl54DdOtPajIXFxeMHTvWbPpaZbRv315c0/UwRo8eLaazPSh/f3/Mnz8f8+fPf+jxED0Mw01XdUGQdJ8hJYMhIiIih2ezmaGOHTtCEAT8+9//hiD5dBXQLfj/8ssvIStJOzFX3QwAVq9eDQBo166d1cZKRGQqGGJpbSIiIudis2DoueeeAwCcOnUKTzzxBHbu3Ilz585h586dePLJJ/HHH3/glVdeQUBAAJYsWSIWANDTarWYP38+duzYAZlMhmeffdZWQyeiGshUmhxLaxMRETkXm6XJvfTSS/jPf/6DpKQk/P777wb7xAiCAA8PD7z77ruoV68ePv30U4wbNw4LFizAo48+CrVajSNHjuDGjRsAdKlUEyZMsNXQiagGMtx01UQBBQZDREREDs9mwZCLiwt++eUXDBgwQNwMVM/HxwerVq1C69atMW/ePMTGxiI2NhYXL140WEukD5o2bNhgtkQzEVFVMNx0lcEQERGRM7JZMAQAjRo1wsmTJ7F9+3YcPnwYRUVFaNmyJUaNGiVWLFMqlfj1118xZ84crFq1Cnfv3gWgC5gGDhyIOXPmoFWrVrYcNhHVQNJ9hFham4iIyDnZNBgCAIVCgeHDh2P48OFm23h4eGDJkiVYsmQJ0tPToVQqUbt2bbHAAhGRtRnMDOk3XZXUfmFpbSIiIsdn82CosurVq2fvIRBRDaQwsekqS2sTERE5F5tVkyMiciTSNLjS0tra0vMMhoiIiBwegyEiIhOkaXAacWZIcp5pu0RERA7P4YKh1atXQ6FQQKms9hl+ROTApGlwGnHNEKvJEREROROHjCgEyRsSIiJrMDUzpJasGWIsRERE5PgcbmaIiMgWpGuG9IUT9N8VchmrWxIRETkBBkNERCYoTMwM6QspcI8hIiIi52CzNLlXXnmlSvq5fPlylfRDRFQeuUE1Od13fYltrhciIiJyDjYLhlatWsW0EiJyGKb2GVJrGQwRERE5E5sXUGDxAyJyBApJErGmzJohxkJERETOwWbBUJ06dXD37l2Eh4dj+fLlD9zPli1bMH369CocGRGRMbmJTVc1TJMjIiJyKjYLhkJDQ7Fr1y6cO3cOTZo0eeB+/P39q3BURESmmUyT0+iDIdaeISIicgY2e0UPDQ0FACQnJ+P27du2elgiogdiamaotICCXYZEREREVcxmL+lhYWHicUJCgq0elojogZiaGWJpbSIiIudiszQ5fTAkCAISEhIwYMCAB+onJCQE48aNq8qhEREZMdhnqOzMkILBEBERkTOwWTAUEBAArVb70P306NEDPXr0qIIRERGZZ2qfITVnhoiIiJwKM9+JiEwoL01OzmpyREREToHBEBGRCdLZH3WZfYY4M0REROQcGAwREZkgXRekD4LENDnODBERETkFBkNERCYoyi2tzWCIiIjIGdgkGNq8ebNV+09JScHvv/9u1ccgoppFuq+qpmxpbQZDRERETsEmwdDzzz+PDh06VHlQdP36dUyZMgUhISHYu3dvlfZNRDWbdGZIqxUgCAJKYiEGQ0RERE7CJsFQixYtcPbsWbzwwgto2rQpPvzwQ5w9e/aB+srNzcXatWvx7LPPIiQkBCtWrIBGo0FISEgVj5qIajKDfYYEQZwVAlhAgYiIyFnYZJ+hs2fPYunSpfj8889x/fp1LFy4EAsXLkSLFi3QrVs3hIaG4tFHH0XdunXh5+cHPz8/5Ofn4+7du8jMzMTFixeRkJCA+Ph4xMfHo6CgAEJJ2sqzzz6LhQsXon379rb4UYiohpCX2XRVnypX9hwRERE5LpsEQ0qlEu+88w4mT56MZcuW4euvv8b169dx8eJFXLp0CT/88INF/Qji7u8KDBkyBNOnT0fXrl2tOXQiqqEM0uQEAdI9ozkzRERE5BxsWk3O09MT06dPx19//YVff/0V48ePR5MmTSAIQoVfKpUKvXv3xqJFi3Dt2jVs2bKFgRARWY2izMyQWhINKRUMhoiIiJyBTWaGypLL5QgPD0d4eDgAIDU1Fb///jtSUlJw+/Zt3L17FyqVCgEBAQgICECHDh3QpUsXuLi42GO4RFQDyQ0KKMBgZkjOmSEiIiKnYJdgqKyGDRtixIgR9h4GEZHIqICCZM0Qq8kRERE5B266SkRkgjTe0WjLVJNjMEREROQUqsXMUGVoNBqkpqYCABo3bmzn0RCRs5LJZJDLAK2gK6DA0tpERETOx67BUFZWFqKjo7F//35cvnwZd+7cgYuLCwIDA9GkSRMMGjQIzzzzDFxdXcVrzp8/jw4dOkAul0OtVttx9ETk7BRyGbQawai0NmeGiIiInINdgqHi4mLMnz8fX331FbKysozOnzlzBgDw3XffwdvbG9OnT8fMmTOhVJYOV5C8MSEisgZdoQRdMKTVcp8hIiIiZ2PzNUOpqano0aMHFixYgPv371dYUjsrKwtz5sxB165dkZycbOvhElENpiwJenSltQWj+4mIiMix2TQYysrKQnh4OBITEyEIAvz9/TFz5kzs3bsXN2/eRFFREXJycnDp0iVs2rQJL774IlQqFQRBwB9//IFu3brh3LlzthwyEdVg+hkgTZk1QyytTURE5BxsGgxNmzYNf/75JwRBwPjx43H16lV89tlneOqpp1C3bl0olUp4eHggODgYzz33HNasWYNr167h1VdfBQDcvHkT48aNs+WQiagG068N0moFaA3WDNlrRERERFSVbPaSfurUKaxfvx4ymQxTp05FVFQUPD09K7wuICAAK1aswJYtW+Du7o6CggIbjNY6cnJycOjQISxZsgQjR45Es2bNIJPJIJPJ0LRp00r3d/bsWbz22msICQmBu7s7AgIC8MQTT+Dbb7+tVHGJjRs3Ijw8HIGBgVCpVGjatCnGjh2Lo0ePWtxHRkYG5s6di44dO8LX1xc+Pj7o2LEj5s6di4yMDIv7OXLkCMaOHYumTZtCpVIhMDAQ/fv3x8aNGy3ug6iq6KvGlZ0ZUsgZDRERETkFwUZmzpwpyGQyoXnz5kJhYeED9fHrr78KLi4uglwuF+RyeRWP0PqefPJJAYDJryZNmlSqr8jISMHNzc1sf926dRPu3LlTbh/5+fnCoEGDzPYhl8uFf/7znxWOJT4+XggMDDTbT4MGDYSEhIQK+/n4448FuVxutp+IiAghPz/f4t9RZSQnJ4uPk5ycbJXHIMfT5ZM9QpOZMUL3z/YJZ1LuCU1mxghNZsYIH/182t5DIyIiqnGs8X7NZh9v7t27FzKZDOPHjzcolV0Z/fv3x/vvv++wleSk4/bz80O/fv3g5eVV6X52796NSZMmobCwEPXq1cPSpUtx7Ngx/Prrrxg+fDgA4OjRoxg+fDi0Wq3ZfiZMmICYmBgAQJ8+fbBt2zbEx8cjKioKwcHB0Gq1mDNnDiIjI832kZqaioiICKSlpUGpVGLGjBk4dOgQDh06hBkzZkCpVOLGjRsYNGiQuD+UKZGRkZg7dy60Wi2Cg4MRFRWF+Ph4bNu2DX369AEA7NixQ0yZJLIFcWao7KarXDNERETkHKokpLJA3bp1BblcLuzdu9dWD1ntfPvtt8K6deuES5cuifc1adKkUjNDxcXFQkhIiABA8PHxES5fvmzUZurUqWLUvHr1apP9HDhwwGDGRa1WG5y/ffu20LhxYwGA4OfnJ2RmZprsZ9y4cWI/mzZtMjq/adMm8fz48eNN9pGZmSnUqlVLACA0btxYuH37tsF5tVotREREiP0cPHjQZD8PgzNDZEr3z/YJTWbGCF0+2SMkXrsrzgzNi06y99CIiIhqHIeeGbp//z4AoE6dOrZ6yGpn0qRJGD16NEJCQh64j59//hmXL18GAHzwwQcIDg42arN48WL4+fmJx6YsWrQIAKBQKLBs2TIoFAqD8/7+/li4cCEAIDMzE1FRUUZ9pKenY+3atQCA8PBwjBgxwqjNiBEjEB4eDgBYs2YN0tPTjdp89913uHfvHgBg4cKF8Pf3NzhfdozmfiaiqqZfGqQtMzPE0tpERETOwWbBUO3atQGgUovpTVGr1bh+/TquX79eFcNyONu2bROPX375ZZNtPDw8MHLkSABAUlISLl26ZHA+JycH+/btAwD069cPjRo1MtnP8OHD4ePjAwDYunWr0fno6GhoNBoAwPjx482OWT9OjUaD6Ohosz+Tj4+PmOZXVqNGjfD0008DAPbs2YOcnByzj0dUVcwVUOCmq0RERM7BZsGQvlra77///lD9vPPOO2jWrBmaN29eBaNyPLGxsQCAVq1aoX79+mbb9e7dWzyOi4szOBcfH4/CwkKjdmW5urqiW7du4jXFxcUmx1JRP+WNpaioCPHx8QCAxx9/vNz1ZPp+CgsLkZCQYLYdUVWRSzZd1XLNEBERkdOxWTAUHh4OQRCwcuVK8Y14Zf3444/4+uuvIQiCwxZReBg5OTlISUkBALRu3brcttLzZTeqld62tB+1Wm00w6Tvx9fXt9zALDAwUJxhKjuWS5cuiWXAH+ZnqkhKSkq5X2lpaZXqj2oGfdCj1QrQCEyTIyIicjY2C4ZefPFFKJVKXLt2De+8806lr1+3bl2N33A1JSVFDALNpbbpBQUFicfJyckG56S3q6KfivqQ9mOtsVjy+OV9hYWFVao/qhn0m65qBAFqpskRERE5HZsFQ8HBwZgyZQoEQcDy5cvxyiuvIDc3t8Lr0tLSMG7cOLz00ksoLi62aKNWZ5WdnS0eV1SSW/p7Kru+pqr7saQ8uL4fa42FyBrk4swQmCZHRETkhJS2fLDFixfjxIkTOHz4MFavXo2dO3diwoQJeOaZZ9C+fXv4+fmhuLgYaWlpOH78OLZv346tW7eisLAQgiCgWbNm+PLLLzFkyBBbDrvaKCgoEI8r2qvJzc1NPM7Pz7dqP5bsG6Xvx1pjqUhFM0lpaWmcHSIj0pkhFlAgIiJyPjYNhlxdXRETE4OxY8ciJiYGt2/fxsKFC8USzqbo08KeeuopbNiwAbdu3bLqGNVqNVxcXB66n5UrV5qt9vagVCqVeFxUVFRuW+m6LHd3d6v1k5eXV2Ef0n6sNZaKWJLKR1SWQm5601WuGSIiInIONkuT0/P19UV0dDQiIyMREhIiFkMw9xUcHIyoqCjs3bsXAQEBth5uteLt7S0eV5QmJk1BLJt+VtX9WJKypu/HWmMhsgaFJOgplqbJMRgiIiJyCjadGZJ65ZVX8PLLL+Po0aM4cOAALly4IO5BFBgYiKZNm2LAgAF49NFHbToupVJZ6UplpgQGBlbBaAxJZzf0VeXMkaaFSQsPmOqnS5cuD9xPenp6hWOR9lPRWCzpw1Q/RNYgXRtUrNaKx3KuGSIiInIKdguGAEAul6N79+7o3r27xde0a9cOWq224oYPoaISz/bi5eWFoKAgJCcn4/z58+W2lZ5v06aNwbm2bduabFdeP0qlEiEhIUb9JCYm4v79+7h586bZ8tppaWnIysoyOZaWLVtCoVBAo9E81M9EZA1yydx5kab0eUepYDBERETkDGySJjdmzBgsWrQIv/32m9XX/Di7nj17AgAuXLiAmzdvmm138OBB8bhHjx4G50JDQ8ViBdJ2ZRUVFeHo0aNG15QdS0X9lDcWV1dXsXDBkSNHyl03pO/Hzc2t3NksoqpikCan4cwQERGRs7FJMLRhwwZ88MEHePbZZxEYGIgGDRpgwIAB+OCDD/Djjz/iwoULNXIT1QcxdOhQ8XjVqlUm2+Tl5WHTpk0AdLM3LVu2NDjv7e2Nvn37AgD27t1rNj1t69at4ozOsGHDjM4PHjwY8pKPzleuXGl2zPpxyuVyDB482OzPlJWVha1bt5rsIyUlBXv37gUA9O3b12CtEZG1SIOeIkmaHNcMEREROQebBEMtW7aETCYTiyLcvHkTu3fvxqJFizB69Gi0bdsW3t7eePzxxzFlyhQsX74cR48eRV5eni2G51CGDRuG4OBgAMBnn32GK1euGLWZPn06MjMzxWNT3nvvPQC66nnTpk2DRqMxOH/nzh3MnDkTAFCrVi28+uqrRn3Ur18fY8aMAQDs3r0bW7ZsMWqzefNm7N69GwAwduxYk6l0r776Knx9fQEA77//vrh2TE+j0WDq1KniGPVjJ7I2adAjTZPjPkNERETOwSZrhs6fP4+CggKcOXMGp06dEr9Onz4tzjzk5eUhPj4e8fHx4nUymQwhISHo1KkTOnbsiE6dOqFTp05WKU5gC5cvX0ZcXJzBffoKajk5OUYzPf379zcKHlxcXLB06VJEREQgKysLPXr0wKxZsxAWFobMzEx89913+OmnnwDo0tjGjh1rcixPPfUUXnjhBWzcuBHR0dHo168f3nrrLTRo0ABnzpzBggULcP36dQDA559/Dj8/P5P9LFiwALt27cLt27cxatQoHD9+HIMGDQIAxMTE4IsvvgAABAQE4JNPPjHZR+3atbFw4UK89tpruHbtGrp27YqPPvoIHTp0wI0bN/Dll19i//79AIBRo0ahT58+JvshqmqGBRRYTY6IiMjpCHZ2+fJlITw8XJDJZGa/5HK5wVfdunWF8PBwew+90lauXCkAsPhr//79ZvtasWKF4OrqavbasLAw4fbt2+WOJy8vTxgwYIDZPuRyuTB37twKf66jR48K9evXN9tP/fr1haNHj1bYz5w5cwSZTGa2nwEDBgj5+fkV9vMgkpOTxcdJTk62ymOQ43l1dYLQZGaM0GRmjLB413nx+OcTKfYeGhERUY1jjfdrNt9nSEqr1eKdd97Bnj17EBwcjOXLl+Pw4cM4c+YM9uzZg08++QRhYWFGew/dvn0be/bssefQ7W7ixIlITEzExIkT0bx5c6hUKtSpUwc9e/bEN998g8OHD8Pf37/cPtzd3bFz506sW7cO/fr1Q926deHq6oqgoCCMHj0acXFxmDdvXoVj6dq1K86cOYNZs2ahffv28PLygpeXFzp06IBZs2YhKSkJXbt2rbCfjz/+GHFxcRg9ejSCgoLg6uqKunXrol+/fli/fj127txpsEkrkbUZzAxJCyhwZoiIiMgpyATBfpUL/vOf/+Dtt99GWFgYDh48CDc3N5PtEhIS8MYbb+DYsWPw8vLCqFGjcP78+XIrmBFVRkpKirh3UXJyssH+R1RzTVt3AjvPpAEAXu7eFKt+/xsAsGzMYxjQwTHTdYmIiByVNd6v2XVmKCoqCjKZDB988IHZQAjQlXWOi4vDSy+9hJycHFy5coWBEBFZnZyltYmIiJyaXYMhfSW0xo0bV9hWoVAgMjISHTt2xP79+7FhwwZrD4+Iajjp3qrSYIgFFIiIiJyDXYMhLy8vALppLksolUr84x//gCAIDIaIyOqkM0OG+wzZYzRERERU1ez6kh4aGgoAWL9+vcXXPPLIIwCAEydOWGVMRER60gIKBvsMyRkNEREROQO7vqK//PLLEAQBmzdvxubNmy26Jjs7GwCMNuYkIqpqSoV0ZkiyzxDXDBERETkFuwZDzz33HJ5++mkIgoDRo0djwYIFKC4uLvealStXAgA8PDxsMUQiqsHkZktr22M0REREVNXs/pK+efNmPPbYY9BoNJgzZw5atmyJzz77DGfPnjVod+XKFYwbNw5r166FTCZD9+7d7TRiIqopFGbWDCkZDRERETkFu7+i+/r64vDhw3jllVcgCAKuXbuGWbNm4ZFHHoGXlxeaNm0KHx8ftGzZEmvXrgWgK6Tw0Ucf2XnkROTszM0MsYACERGRc6gWL+lubm6IjIxEbGws+vbtC0EQIAgC8vLycP36deTk5Ij31apVCxs3bkS3bt3sPWwicnIK7jNERETk1JT2HoBUjx49sGfPHqSlpWHXrl04deoUbt68ifz8fNStWxfdunXDiBEj4OPjY++hElENIA2GCtXcZ4iIiMjZ2CwYSkxMROfOnS1qGxgYiPHjx1t5RERE5TOfJsdgiIiIyBnYLE0uNDQUjRo1wuTJkxETE4OCggJbPTQR0QORrg0q1khKazMYIiIicgo2XTN048YNREZGYsiQIahTpw4iIiKwYsUK3Lhxw5bDICKyiMLczBDXDBERETkFmwVDKSkpWL58OQYMGACVSoX8/Hzs3LkTU6ZMQVBQEDp37ox58+YhMTHRVkMiIiqX3Expbc4MEREROQebBUMNGjTApEmTsGPHDty5cwfbt2/HxIkTERgYCEEQcPLkScyfPx9hYWFo2LCh2DY/P99WQyQiMiCdASrimiEiIiKnY5fS2u7u7oiIiMC3336LlJQUJCQkYM6cOXj00UchCALS0tIQFRWFoUOHwt/fn+l0RGQXcpbWJiIicmrVYp8hfYrc8ePHmU5HRNWGgmlyRERETq1aBENS0nS6jIwMREdHl5tON3nyZJw6dcrewyYiJyRNk9OWFpODksEQERGRU6hWm66WpVKpMGjQIAwaNAiAbq+imJgY7NixAydPnkRaWhoiIyPRsGFDdOzY0c6jJSJnY24GSM5giIiIyCnYdWYoPj4eeXl5Frfv3Lkz5s6di+PHjyM5ORnLly/HwIED4eHhYcVRElFNZS4YYmltIiIi52DXmaFu3bpBLpdjwoQJ+Pbbbyt1rT6dbtKkSVYaHRHVdOZmgBQKBkNERETOwO5rhgRBwO3bt+09DCIiI+ZmgDgzRERE5ByqxZqhwsJCbN26FQcOHEBqairkcjmCgoIQGhqKp556CvXq1bP3EImoBlKY+biI1eSIiIicQ7UIhnbt2oVdu3aZPCeTydC/f3/MnDkTvXr1svHIiKgmM7efEPcZIiIicg52T5MDdKly+i+ZTAaFQiHe1mq1+PXXX/Hkk0/ilVdeQVFRkb2HS0Q1hLkZIJbWJiIicg7VIhiSyWQYNWoU4uPjUVBQgKKiIty5cwe//vorXn/9ddSqVQuCIGD16tV45plnUFhYaO8hE1ENwNLaREREzq1aBEMjR47EunXr0KVLFyiVusy92rVrIzw8HEuXLsXVq1cxefJkCIKA2NhYvP7663YeMRHVBKbS4bheiIiIyHlUi2Bo/Pjx5Z738fHBN998g8WLF0MQBHz//fc4efKkjUZHRDWVqcCHwRAREZHzsGsw5O7uDgCoW7euRe3fffdd9OvXDwDw3XffWW1cRESAmZkhFk8gIiJyGnYNhurUqQMAuHr1qsXXTJo0CYIg4H//+5+1hkVEBIAzQ0RERM7OrsFQ586dIQgCfvjhB4uvad68OQAgNTXVWsMiIgJgep8hxkJERETOw67B0JAhQwAA27dvR1RUlEXXpKWlWXNIREQiU2lySnM7sRIREZHDseur+ujRo9GiRQsIgoBJkyZh5syZyMvLK/ear776CgDQuHFjWwyRiGowpdz4KZIbrhIRETkPuwZDrq6u2Lp1K+rVqwdBELBkyRI0bdoUb731Fn755RekpqZCq9UiPz8fsbGxePbZZ7F7927IZDIMGDDAnkMnohrARCxkMnWOiIiIHJPS3gNo164djhw5ghdffBG///477ty5g6+++kqcATKlTp06mDFjhg1HSUQ1kanKcaZmi4iIiMgxVYtX9aZNmyIuLg4bNmxAz549IQiC2a8WLVrgf//7HwICAuw9bCJycqYqxzEWIiIich52nxmSev755/H8888jPT0dhw4dQlJSEq5fvw6tVou6deuiZ8+eGDRoEBQKhb2HSkQ1gNxUaW2uGSIiInIaNgmGxowZg44dO6JTp07o1KlThZus1qtXDyNGjMCIESNsMTwiIpOUJmeGGAwRERE5C5sEQxs2bMDGjRvF2/Xq1UOnTp0MAqSWLVtCxk9ciagaMbnpKp+niIiInIZNgqGWLVvi8uXL0Gq1AICbN29i9+7d2L17t9jG3d0dHTp0MAiSHnnkEXh4eNhiiERERkwVS+A+Q0RERM7DJsHQ+fPnUVBQgDNnzuDUqVPi1+nTp5GVlQUAyMvLQ3x8POLj48XrZDIZQkJCjGaRAgMDbTFsIqrhTM0MmUqdIyIiIsdks484VSoVQkND8eqrr+Krr77CoUOHcO/ePVy6dAnPPPMMABhVjtNqtbh48SI2b96MWbNmYdCgQWjUqBHq1auH/v3722roVSYnJweHDh3CkiVLMHLkSDRr1gwymQwymQxNmza1qA9BEBAXF4c5c+agb9++CAwMhKurK3x8fNCuXTtMnToVp06dqtS4Nm7ciPDwcAQGBkKlUqFp06YYO3Ysjh49anEfGRkZmDt3Ljp27AhfX1/4+PigY8eOmDt3LjIyMizu58iRIxg7diyaNm0KlUqFwMBA9O/f3yDNkshWTAU+SgWDISIiImchEwRBsNeDa7VaDBs2DDExMWjevDmmT5+ODh06wMfHBzdv3sSxY8cQHR1tMFukJ5PJoNFo7DDqB9enTx8cOHDA5LkmTZrg77//rrCPJk2a4Pr16+W2kclkmD59Oj7//PNy12EVFBRgxIgRiImJMXleLpdj3rx5mD17drmPl5CQgCFDhiAtLc3k+QYNGmD79u3o0qVLuf3885//xMcffyymU5YVERGBTZs2QaVSldvPg0hJSUFQUBAAIDk5GY0aNaryxyDHk3w3D70W7Te4L7SpHza/1t1OIyIiIqq5rPF+za7J71999RV27NiB0NBQJCUlYdKkSXj88cfRrl079O3bFx9++CGOHj2KY8eOoWvXrgAALy8vTJw4ET179rTn0B+INO708/NDv3794OXlVak+UlNTAQAhISGYOXMmoqOjcfz4ccTGxuKf//wn/Pz8IAgCFi1ahI8++qjcviZMmCAGQn369MG2bdsQHx+PqKgoBAcHQ6vVYs6cOYiMjCx3PBEREUhLS4NSqcSMGTNw6NAhHDp0CDNmzIBSqcSNGzcwaNAgceymREZGYu7cudBqtQgODkZUVBTi4+Oxbds29OnTBwCwY8cOvPrqq5X6fRE9DFOzQKZS54iIiMhBCXbUoUMHQS6XC9u2bauwrVqtFsaNGyfIZDKhb9++Nhhd1fv222+FdevWCZcuXRLva9KkiQBAaNKkiUV9PP7448KuXbsErVZr8vzly5eFgIAAAYCgVCqFK1eumGx34MABAYAAQIiIiBDUarXB+du3bwuNGzcWAAh+fn5CZmamyX7GjRsn9rNp0yaj85s2bRLPjx8/3mQfmZmZQq1atQQAQuPGjYXbt28bnFer1UJERITYz8GDB0328zCSk5PF/pOTk6u8f3JMt7IKhCYzYwy+xnx31N7DIiIiqpGs8X7NrjNDV65cAQA0bty4wrYKhQKRkZHo2LEj9u/fjw0bNlh7eFVu0qRJGD16NEJCQh64j99//x3h4eFm09+Cg4MxZ84cAIBarcb27dtNtlu0aBEA3e912bJlRhvZ+vv7Y+HChQCAzMxMREVFGfWRnp6OtWvXAgDCw8NN7gs1YsQIhIeHAwDWrFmD9PR0ozbfffcd7t27BwBYuHAh/P39Dc6XHePixYtN/kxEVc3UmiHODBERETkPuwZD+hSx5ORki9orlUr84x//gCAIDhkM2Yo+rQwoDTilcnJysG/fPgBAv379zOZbDh8+HD4+PgCArVu3Gp2Pjo4W122NHz/e7HhefvllAIBGo0F0dLTR+W3btgEAfHx8MHz4cJN9NGrUCE8//TQAYM+ePcjJyTH7eERVRWEiTc6FBRSIiIichl2DodDQUADA+vXrLb7mkUceAQCcOHHCKmNyBoWFheKx3MQ+KfHx8WKb3r17m+3H1dUV3bp1E68pLi42OB8bGysel9eP9FxcXJzBuaKiIrFAxuOPPw5XV9cK+yksLERCQoLZdkRVhTNDREREzs2uwdDLL78MQRCwefNmbN682aJrsrOzAaBS5ZprmoMHD4rHrVu3Njp/7ty5cs9L6c+r1WpcunTJZD++vr6oX7++2T4CAwPFGSbpYwPApUuXoFarKzUWU/0QWYPpfYa46SoREZGzsMmmq+Y899xzePrpp7F3716MHj0aFy9exIwZM+Di4mL2mpUrVwIAPDw8bDVMh5KXl4cvv/wSgG5mZ8iQIUZtpGmJFZUk1Jcv1F/Xtm1bo34sKWsYFBSEs2fPGqVEPsxYKiMlJaXc8+bKglPNZirw4cwQERGR87BrMAQAmzdvRt++fXHixAmxjPOkSZMwePBgtGvXTmx35coV/POf/8TatWshk8nQvTv3+TBl5syZ4j5E06ZNQ8OGDY3a6GfXAFRY2tvT01M8LrtOR9+PJeXB9f2Y6+Nhx1IRaSBFZCmFXAaZDJDuxsZNV4mIiJyH3fM9fH19cfjwYbzyyisQBAHXrl3DrFmz8Mgjj8DLywtNmzaFj48PWrZsKVYuUyqVFe6hUxOtW7cO//3vfwEAbdq0wYIFC0y2KygoEI/LW6MDAG5ubuJxfn6+yX4q6kPaj7k+HnYsRNZSdt2QqXVERERE5JjsHgwBuje5kZGRiI2NRd++fSEIAgRBQF5eHq5fv46cnBzxvlq1amHjxo3iwv6qplarIZPJHvpr1apVVhmfOQcOHMCECRMA6DZ03bJlC9zd3U22ValU4nFRUVG5/UqLMZTtT99PRX1I+zHXx8OOpSLJycnlfumLOBCVVTYtTsE1Q0RERE7D7mlyUj169MCePXuQlpaGXbt24dSpU7h58yby8/NRt25ddOvWDSNGjBAX45PO8ePHMXjwYBQWFsLT0xO//PKLwdqesry9vcXjitLNcnNzxeOyaWze3t7Iy8uzKGVN34+pPqpiLBWxZF0TkSm6dUNayW3ODBERETmLahUM6QUGBpa7b401KZXKKqlUFhgYWAWjqdjZs2fRv39/ZGdn/3979x0eZZX///81SUhPKFKC4oeglCAgREMMS1OKBVGKZYGoQaUputa9bAh6fZZFVD7qugqCLoRVkCIixQVBCcIC0sXASg0lAaQsCKQASc7vD75z/yaZkgmkTDLPx3XN5STn3Od+T+7jMO855VZISIjmz59f4qiZY2KQmZmphIQEt3UdNyoovu6mUaNG+u2330rcnMCxHVdtOMbiTRuu2gHKi/PIEMkQAADVhU8mQyXZsGGDpk+frg8//LBc2i9pi2dfsXfvXvXs2VMnT55UUFCQZs2aZd2Y1BPHUaNff/3VY117eVBQkJo2berUzqZNm/T777/r6NGjbrfXPnLkiM6cOSPp0lomR82bN1dgYKAKCgq8jsVVO0B5KT4SxE1XAQCoPqrM5PfMzEyNGzdON9xwg5KSkvTxxx9XdkiVKjMzU927d9eRI0cUEBCg1NRUl9tou9K+fXtrswLHexIVd+HCBa1bt87pGLtOnTpZzz2141jWsWPHImXBwcFKTEyUJK1du9bjuiF7OyEhIR5Hs4CyxJohAACqL5/+Vz07O1upqanq3r27YmNjNWrUKO3cuVPGcZ9bP3Ts2DH16NFDBw4ckCRNmjRJgwYN8vr4qKgode/eXZK0fPlyt9PT5s2bZ43o9OvXz6n83nvvVcD/+2Bov/+TK/bNJAICAnTvvfc6lfft21eSdObMGc2bN89lG5mZmVq+fLkkqXv37kXWGgHlqUZg0bdJ1gwBAFB9+FwyZIzRsmXL9PDDDysmJkaPPfaY0tLSVFhY6PdJkCSdPn1ad9xxh3bu3ClJeu+99zR06NBSt/Piiy9KurR73siRI1VQUFCk/MSJE3rppZckSbVq1dKQIUOc2oiJiVFycrIkaenSpZo7d65TnTlz5mjp0qWSZF3T4oYMGaKaNWtKkl5++WWdPHmySHlBQYGefPJJK0Z77EBFYM0QAADVl8+sGdq+fbtSU1M1Y8YMHTlyRJKs5KdGjRq6/fbblZycrNzcXGsL6apmz549Wr16dZHf2XdQO3funNN23HfeeWeR5OH8+fO6++67tXXrVklScnKyevToofT0dLfnjIiIUJMmTZx+361bNw0YMEBffvmlFixYoJ49e+rZZ5/V1VdfrV9++UVjx461bt761ltvqXbt2i7bHzt2rJYsWaLjx49r4MCB2rhxo3r37i1JWrRokSZMmCBJqlevnv7yl7+4bKNOnToaP368RowYoQMHDuiWW27Ra6+9pjZt2ujw4cN6//33tWLFCknSwIEDddttt7l9vUBZY80QAADVmKlEx44dM++9956Jj483AQEBJiAgwNhsNmOz2UxAQIDp1KmTmThxojl58qR1zJdffmmVVzVTp041krx+rFixosjxGRkZpTpekunatavbeHJyckyvXr3cHhsQEGDGjBlT4utat26diYmJcdtOTEyMWbduXYntjB492thsNrft9OrVy+Tm5pbYzuU4dOiQdZ5Dhw6VyzlQNfWYkGYav7TIeny8Yk9lhwQAgF8qj89rFT4ydP78eX3zzTeaPn26vvvuO2vqk/l/o0CtWrVScnKyBg0apP/5n/+p6PD8SlhYmBYvXqwZM2Zo2rRp+vnnn3X69Gk1aNBAnTt31lNPPaUOHTqU2M4tt9yiX375RR988IHmz5+v/fv3S5KaNGmiPn366Nlnn9VVV11VYjtvvvmm7rjjDn300UdatWqVfvvtN9WqVUtt27bVo48+qoEDB17pSwZKrfi0ONYMAQBQfdiMqZiFOKtXr9b06dM1Z84ca1G+/dTXXnutBg4cqOTkZLVp08ZjO7NmzdLAgQNls9mc1rkAlyszM9O6d9GhQ4e4SSssvT9cpfSsM9bPo3vfoMc6OU89BQAA5as8Pq9V2MhQly5dZLPZrASoTp06uv/++zVo0CB16dKlosIAgFIJKraVdhBrhgAAqDYqfJqczWbTY489pg8++EDh4eEVfXoAKJXi0+KKJ0cAAKDqqtB/1e2jQv/4xz/UuHFjjRw50ml3NQDwJawZAgCg+qqwZGjVqlXW/WSMMTp58qQmTZqkrl27KjY2Vq+99pq2b99eUeEAgFeKT4vjPkMAAFQfFZYMdezYUZMnT9bRo0c1a9Ys9erVS4GBgTLG6ODBg3rrrbd04403qm3btnrnnXd06NChigoNANwKZM0QAADVVoVPfg8ODtYDDzygRYsWKSsrSxMmTFDbtm1ljJExRunp6Xr55ZfVpEkTde3aVVOmTNGpU6cqOkwAkMSaIQAAqrNK/Ve9Xr16eu6557RlyxZt27ZNzz//vGJiYmSMUWFhoVavXq0RI0aoYcOG6tu3r2bPnq2cnJzKDBmAnyk+LY5pcgAAVB8+8xVn69at9e677+rQoUP69ttvNWDAAIWGhsoYowsXLmjhwoUaOHCghg4dWtmhAvAjNQLZQAEAgOrKZ5Ihu4CAAN15552aMWOGjh49qsmTJ6tz586SZI0YAUBFKb5mKJA1QwAAVBs+lww5ioqK0pAhQ7Ry5Urt3btXb7zxhpo2bVrZYQHwI4wMAQBQffl0MuQoNjZWo0eP1q5du7Rq1SqmywGoEOHBgUV+DgkKdFMTAABUNUGVHcDl6Nixozp27FjZYQDwA2E1iiY/xZMjAABQdVWZkSEAqAxhwUW/MyIZAgCg+iAZAgAPiic/4cFVckAdAAC4QDIEAB44JUMhjAwBAFBdkAwBgAehxdcM1SAZAgCguiAZAgAPio8MBQXytgkAQHXBv+oA4AEbJgAAUH2RDAGAB8WnyQEAgOqDZAgAPGD3OAAAqi+SIQDwoPhNVwEAQPVBMgQAHgTYKjsCAABQXkiGAMCDmmE1KjsEAABQTkiGAMCD+tGherpbU8XFRGnOiA6VHQ4AAChDrAwGgBK8cHsLvXB7i8oOAwAAlDFGhgAAAAD4JZIhAAAAAH6JZAgAAACAXyIZAgAAAOCXSIYAAAAA+CWSIQAAAAB+iWQIAAAAgF8iGQIAAADgl0iGAAAAAPglkiEAAAAAfolkCAAAAIBfIhkCAAAA4JdIhgAAAAD4JZIhAAAAAH6JZAgAAACAXyIZAgAAAOCXSIYAAAAA+KWgyg4A8AX5+fnW8yNHjlRiJAAAAHDF8TOa42e3K0EyBEg6fvy49TwxMbESIwEAAEBJjh8/rtjY2Ctuh2lyAAAAAPySzRhjKjsIoLLl5eXpl19+kSTVq1dPQUHlO2h65MgRawRq/fr1atiwYbmeD6DPoSLR31DR6HP+IT8/35rN06ZNG4WGhl5xm0yTAySFhoaqffv2lXLuhg0bqlGjRpVybvgn+hwqEv0NFY0+V72VxdQ4R0yTAwAAAOCXSIYAAAAA+CWSIQAAAAB+iWQIAAAAgF8iGQIAAADgl0iGAAAAAPglkiEAAAAAfombrgIAAADwS4wMAQAAAPBLJEMAAAAA/BLJEAAAAAC/RDIEAAAAwC+RDAEAAADwSyRDAAAAAPwSyRAAAAAAv0QyBAAAAMAvkQwBAAAA8EskQ0AFO3jwoF588UW1bNlSERERqlOnjhITE/Xuu+8qJyenssNDJbPZbF49br311hLbWrJkifr3769GjRopJCREjRo1Uv/+/bVkyRKv48nJydE777yjxMRE1alTR5GRkWrZsqVefPFFHTx48ApeKSrCsWPHtGjRIo0ePVp33XWX6tata/WhwYMHl7o9X+pT27dv14gRI9S0aVOFhYWpXr166tKliz755BPl5+eX+rWhbJRFn5s2bZrX74XTpk0rsT36HDwyACrMokWLTM2aNY0kl48WLVqYvXv3VnaYqETu+kbxR9euXd22UVhYaIYNG+bx+GHDhpnCwkKPsezZs8e0aNHCbRs1a9Y0ixcvLuO/AMqSpz6QkpLidTu+1qc+/fRTExIS4radpKQkc+LECa9fH8pOWfS5qVOnev1eOHXqVI9t0edQEpIhoIJs3brVhIeHG0kmMjLSjB071qxZs8Z8//33ZujQodYbalxcnDl79mxlh4tKYu8HTzzxhPnll1/cPvbt2+e2jVdffdVqJz4+3sycOdOsX7/ezJw508THx1tlr732mts2zp49a+Li4qy6Q4cONd9//71Zs2aNGTt2rImMjDSSTHh4uPn555/L40+BMuD4Ye3aa681t99++2UlQ77Up5YsWWICAgKMJNOgQQPzt7/9zfz000/mX//6l+nfv7/VfpcuXUxBQUFp/lwoA2XR5xyToaVLl3p8Lzx16pTbduhz8AbJEFBBbr31ViPJBAUFmTVr1jiVv/3229Yb6ptvvlkJEcIX2PvAmDFjLuv43bt3m6CgICPJJCQkmJycnCLl2dnZJiEhweqLe/bscdnOmDFjrFjefvttp/I1a9ZY57ntttsuK1aUv9GjR5uFCxeao0ePGmOMycjIKPUHU1/qUxcvXjRNmzY1kkx0dLTLcz355JPWeVJTU716jSg7ZdHnHJOhjIyMy46FPgdvkAwBFWD9+vXWG+Xw4cNd1ikoKDAtW7Y0kkzt2rXNhQsXKjhK+IIrTYYc/1Feu3atyzpr16616jz11FNO5RcuXDC1atUykkzLli3dftM5fPhwq52NGzdeVryoWJfzwdSX+tTs2bOt8nHjxrlsIzs729SuXdtIMq1bt/bqNaL8VFYyRJ+Dt9hAAagA8+fPt54/+uijLusEBATokUcekSSdOnVKaWlpFRAZqhNjjL755htJUlxcnJKSklzWS0pKUosWLSRd6pvGmCLlaWlpOn36tCQpJSVFAQGu/6lwXAw9b968K4wevsjX+pTje6m7xfjh4eF68MEHJUnp6enavXu3y3qo3uhz8BbJEFABVq1aJUmKiIjQzTff7LZe165dreerV68u97hQvWRkZCgrK0tS0b7kir08MzNT+/fvL1Jm768ltZOQkKCIiAhJ9Nfqytf6lL2dFi1aKCYmpsRY3LWD6o8+B2+RDAEV4D//+Y8kqWnTpgoKCnJbLy4uzukY+Kc5c+aoRYsWCgsLU1RUlJo1a6aUlBStWLHC7TGOfcaxL7niqa95205QUJCuv/56l22gevClPnXu3DllZmZecSyoWgYPHqwGDRooODhYdevWVVJSkkaNGmUl6e7Q5+AtkiGgnOXl5enEiROSpEaNGnmsW7t2besbqkOHDpV7bPBdO3bs0K5du5SXl6dz585pz549mj59urp166Z+/frp999/dzrGsc+U1NeuvfZal8c5/hwREaFatWp51c7x48d1/vx5j3VR9fhSn8rMzLSm311JLKhaVq5cqWPHjunixYs6efKkfvrpJ40dO1ZNmzbVJ5984vY4+hy85f4ragBl4uzZs9bzyMjIEutHREQoOztb586dK8+w4KPCw8N17733qnv37oqLi1NkZKSOHz+ulStXatKkSTp58qTmz5+vPn36aNmyZapRo4Z1bGn6mj3pluTU1+zteNtfHdsJCQkp8RhUHb7Up8oqFlQN1113nfr3768OHTpYica+ffv01Vdfae7cucrLy9OIESNks9k0bNgwp+Ppc/AWyRBQzvLy8qznwcHBJda3vwnn5uaWW0zwXVlZWS6/xezZs6eefvpp3XXXXdqyZYtWrlypiRMn6k9/+pNVpzR9zTFpKd7X7O2Upr+6agdVny/1qbKKBb6vX79+SklJkc1mK/L79u3b649//KMWLVqk/v376+LFi3ruued07733Oq3noc/BW0yTA8pZaGio9fzChQsl1rcP0YeFhZVbTPBdnqZzNGjQQHPnzrX+Uf7www+LlJemrzlOBSne1+ztlKa/umoHVZ8v9amyigW+r2bNmk6JkKPevXtrzJgxkqScnBx99tlnTnXoc/AWyRBQzqKioqzn3gydZ2dnS/JuaB/+57rrrlPPnj0lSXv27NHhw4etstL0NXs/k5z7mr2d0vRXV+2g6vOlPlVWsaB6GDp0qJUwrVy50qmcPgdvkQwB5Sw0NFR169aVJGtXGndOnTplvaE6LsYEHN1www3Wc8cdlRwX+JbU1xwX+Bbva/Z2srOzrft0lNROvXr1WC9UDflSnyqrWFA91K9f3/q31dXOcvQ5eItkCKgALVu2lHTpm/z8/Hy39X799VenY4Diit/Q0s4xSXLsS6546mvetpOfn6+9e/e6bAPVgy/1qcjISOtD5pXEgurD3XuhRJ+D90iGgArQqVMnSZe+odq0aZPbeo5D/R07diz3uFA17dixw3p+9dVXW8+bNGli/exq2oijH3/8UZJ0zTXXKDY2tkiZvb+W1M7GjRutkUz6a/Xka33K3s7OnTt19OhRt+3wXlr9HTt2TCdPnpRU9H3Qjj4Hb5EMARWgb9++1vOpU6e6rFNYWKjp06dLurSI/rbbbquI0FDF7Nu3T8uWLZN0af3QNddcY5XZbDb16dNH0qVvKdetW+eyjXXr1lnfYvbp08dpofKtt96qmjVrSpJSU1Pdfvs6bdo063m/fv0u7wXBp/lan3J8L3Ws6ygnJ0ezZ8+WdGl0oHnz5i7roWqbPHmy1Y+6du3qVE6fg9cMgArRuXNnI8kEBQWZNWvWOJW//fbbRpKRZMaMGVPxAaLSLViwwFy8eNFt+dGjR018fLzVTyZMmOBUZ+fOnSYoKMhIMgkJCSYnJ6dIeU5OjklISLD64q5du1ye6/XXX7fO8/bbbzuVr1mzxjpP165dS/dCUWkyMjKs65qSkuLVMb7Upy5cuGCuv/56I8lER0ebPXv2ONV58sknrfNMnTrVq9eI8lPaPpeRkWE2b97ssc7ChQtNcHCwkWRCQ0NNZmamy3r0OXjDZoyHCZcAysyWLVvUsWNH5ebmKjIyUq+++qpuu+025ebm6ssvv9TkyZMlSc2bN9fGjRuL7GID/xAbG6uLFy/qvvvuU4cOHRQbG6uwsDCdOHFCaWlp1k1XpUtTN5YvX+5y04JXXnlFb731liQpPj5eL730kq6//nrt3btX48eP15YtW6x6f/3rX13GcvbsWSUkJGjXrl2SpGHDhmnAgAEKCwvTihUr9Ne//lXnzp1TWFiY1qxZo3bt2pXDXwRXavXq1dqzZ4/184kTJ/TnP/9Z0qWpPEOGDClSf/DgwS7b8aU+9e233+qee+5RYWGhGjRooFGjRikxMVGnTp3SlClT9NVXX0m69P9IWlqaAgMDvftjoUxcaZ9LS0vTbbfdpg4dOuiee+5Ru3btVL9+fRljtG/fPs2dO1dz5861Rnr+/ve/a+TIkS5joc/BK5WbiwH+ZcGCBSY6Otr6Bqn4o3nz5mb37t2VHSYqSePGjd32DcfHfffdZ06dOuW2nYKCAvPYY495bOPxxx83BQUFHuPZvXu3adasmds2oqOjzcKFC8v4r4CylJKS4lWfsj/c8bU+NXnyZGtkwNUjMTHRHD9+vNR/L1y5K+1zK1as8Oq48PBw88knn5QYD30OJWFkCKhgBw4c0AcffKDFixcrMzNTwcHBatq0qR544AE99dRTCg8Pr+wQUUlWrlyplStXau3atdq3b59OnDihM2fOWDsa/eEPf1BKSoo6dOjgVXvffvutJk+erA0bNujEiROqW7eu2rdvr+HDh+uuu+7yqo3s7Gx99NFHmjNnjvbs2aMLFy7o2muvVa9evfTMM8+ocePGV/KSUc4GDx6s1NRUr+uX9JHAl/pUenq6/va3v+n777/X4cOHFRERoZYtWyo5OVlDhgxRUFCQV+2gbF1pnzt79qwWLFigtWvXauPGjTpy5IhOnDih/Px81a5dW61atVL37t01ZMgQ1a9f36tz0OfgCckQAAAAAL/EbnIAAAAA/BLJEAAAAAC/RDIEAAAAwC+RDAEAAADwSyRDAAAAAPwSyRAAAAAAv0QyBAAAAMAvkQwBAAAA8EskQwAAAAD8EskQAAAAAL9EMgQAAADAL5EMAQAAAPBLJEMAAAAA/BLJEAAAAAC/RDIEAAAAwC+RDAEAAADwSyRDAAAAAPwSyRAAAIAf+fzzzzV8+HAlJCQoJCRENptN06ZNq+ywgEoRVNkBAAAAoOKMGjVKBw4cUN26ddWwYUMdOHCgskMCKg0jQwAAAH7k008/1f79+3X8+HGNGDGissMBKhXJEAAA1dwbb7whm80mm81W2aHAB/To0UONGzeu7DAAn0AyBABVSEFBgaKjo2Wz2XTTTTd5rGuM0VVXXWV9CP7HP/7hsf6sWbOsuu+//34ZRg1UnKysLKsfb9iwobLDAeDjSIYAoAoJDAzUH/7wB0nSzz//rN9//91t3e3bt+u///2v9fOPP/7ose1Vq1ZZz7t06XKFkQKVY9GiRZKkmJgYJSQkVHI0AHwdyRAAVDH2RKWwsFBr1qxxW8+e3AQGBhb5uaT60dHRatu2bVmEClS4hQsXSpJ69+7NtEAAJSIZAoAqxnHUxtNojz25eeCBByRJ+/btU1ZWlsu6p0+fVnp6uiSpY8eOVgIFVCU5OTn64YcfJEn33HNPJUdTfurWrWtNBfTmkZaWVtkhAz6LrbUBoIpJTExUaGio8vLyPI722Mv69eunLVu2aOfOnVq1apUGDBjgVHf16tUqLCyUxBQ5VF3Lly9Xbm6uQkND1aNHj8oOp9wMHDhQZ8+e9bp+TExMOUYDVG2MDAFAFRMcHKxbbrlFkrRhwwbl5eU51dm/f78yMzMlSZ06dVKnTp0kuR9JKmm9UHp6uv7yl7/ojjvuUKNGjRQSEqLIyEg1a9ZMKSkpWrdunct2c3JyFBUVJZvNpoceeqjE17Z+/Xrr2+wPP/zQbZ2hQ4eqefPmioyMVEREhOLi4jRy5Ejt3r3bY/vFd1XLy8vTO++8o5tuuklRUVGKiopSYmKi/v73vys/P99lG4MHD5bNZlNsbKzHc02bNs061/79+0uM5cyZM3rjjTfUpk0bRUZGqkGDBurVq5fTVMhjx45p1KhRatWqlSIiInTVVVepT58+2rJli8d4HJ0+fVpjxoxRq1atFBkZqTp16ujWW2/VF1984dXxZXkNfv/9d/3v//6v4uPjVatWrSu6Aah9vVC3bt0UHh5+WW1I0r///W8NGTJELVq0UHR0tCIjIxUXF6e+fftq+vTpOnPmjMfXVN7X8sMPP9S0adO8fsTFxV323wKo9gwAoMp5/fXXjSQjyaSlpTmVT58+3Ugy1113nTHGmKlTpxpJpnXr1i7bS0pKMpJMWFiYOX/+fJGyFStWWOfy9Hj55Zddtv3QQw8ZSSYiIsKcO3fO4+t65plnjCQTGBhofvvttyJlFy9eNE888YTHGGrUqGEmT57stv0xY8ZYdY8ePWratm3rtq177rnHFBQUOLWRkpJiJJnGjRt7fC32v7kkk5GR4TGWgwcPmubNm7uMIzAw0MyePdsYY8zPP/9srrnmGpf1QkJCzPfff1/i6963b5+5/vrr3b7u+++/31y8eNFlO2V9DXbt2mViY2Od2pg6darHv60rhYWF5uqrrzaSzMSJE0t9vDHG5OTkmIEDB5bY18eMGeP2NZX3tSxr48aNu+y/OVAdMDIEAFVQSeuG7CM99hEh+3+L7zAnSbm5udq0aZMkKSkpScHBwUXK8/PzFRERoQcffFCTJk1SWlqaNm/erCVLlmjChAnW/UreeustTZ061SmW5ORkSVJ2dra++eYbt6+poKBAs2bNkiT17NlT9evXL1L++OOPa+LEiZKku+66S59//rnWr1+vDRs2aMqUKWrVqpUuXryoYcOGWYvoPenfv7/+85//6E9/+pOWLVumTZs2acaMGWrZsqWkSwvxp0yZUmI7ZeGBBx5QZmamXnnlFa1cuVIbNmzQe++9p+joaBUUFOjxxx9XRkaGevfurdzcXI0dO1arV6/WTz/9pDfffFPBwcE6f/68Hn30UV24cMHjuf74xz8qIyNDI0aM0PLly7VhwwZ99tlnat68uSRp7ty5ev75510eW9bX4P7771dWVpaefvppLVu2TBs3btTMmTPVokWLUv4FpU2bNunw4cOSLm2eUFqFhYXq06ePZs6cKUlq1qyZ3nvvPa1atUqbNm3SokWL9Oqrr6pp06Ye26nIawmgDFR2NgYAKL1z586ZGjVqGEmmZ8+eTuVxcXFGkpkyZYr1u5iYGCPJfPPNN0Xq/vDDD26/8TbGmOPHj5tTp065jeX8+fOmZ8+e1mhJfn5+kfL8/HxTv359I8ncfffdbtv57rvvrDj++c9/FimbO3euVeb4mhzl5uaabt26GUkmNjbW5eiG4zf4NWrUMCtWrHCqc/LkSdOgQQMjydx4441O5eUxMhQSEmLWrVvnVGfx4sVWnXr16pm6deuaPXv2ONX76KOPrHrz5s3zeC5JZsaMGU51zpw5Y42UBQQEmG3bthUpL49rEBAQYL777juXbZXW6NGjjSTTrl27yzr+/ffft+Lq16+fycvLc1mvoKDAZGVlFfldRV7LsjBlyhSTkpJiUlJSzE033WQkmY4dO1q/+/rrr8vlvIAvIhkCgCrqlltuMZJMZGRkkQ+dx44dsz5M/frrr9bv77vvPiPJvPDCC0XaefPNN636lzs1Z+vWrVYbGzdudCp/+umnjSQTFBRkjh8/7rINe5IRHh5uzp49W6Ts5ptvtj6kerJjxw4rjmXLljmVO35off7559228/LLL1v1Tp8+7TLOskyGXnrpJbftNG7c2Ko3adIkl3VycnJMaGiokWSee+45j+fq3bu323P99NNPVr0nn3yySFl5XIPHHnvMY1ulYf9Q//rrr5f62IKCAmvK2jXXXOPU/0pSkdeyLNj7sLuHqy9FgOqKaXIAUEXZp8qdO3euyILr1atXS5Lq1atXZLqRfapc8R3o7NPsgoOD1aFDhxLPe/78eR08eFA7duxQenq60tPTZYyxyn/++WenY+ybJ+Tn52vOnDlO5Xl5efr6668lSX369FFkZKRVlpWVZU3je/DBBz3G1rJlS9WtW1eStHbtWo917dP3XLn55put5xkZGR7bKQuudvizu/HGGyVJNpvN7esPCwtTs2bNJF3aQt2TRx991G1ZYmKiWrVqJenSzmx2lXENSiMrK0ubN2+WdHlbam/dutXadn7o0KFF+l9pVeS1vFzTpk2TufSFuMvHG2+8US7nBXwRyRAAVFGdO3e2njuuGyq+Xqh4/c2bNys7O1vSpeTEvhNcQkKCwsLCXJ4rOztb48aNU9u2bRUREaHGjRurVatWatOmjdq0aaP4+Hir7okTJ5yOT0xMtD7gudqxbOHChdYOXcU/IG/cuNF6PnDgwBLvqWI//9GjR12+FjtPO2zVqVPHel6aLYwvl329jiu1atWSdOneMrVr1y6xXknxtm/f3mN5YmKiJGn37t3WmpXyugb25OBK2XeRi4mJUUJCQqmPd/wy4Uq3lq/IawngypEMAUAV1blzZwUEXHobdxztcZcMtWvXTpGRkcrPz7e+sXdMjNx9CNy/f7/atGmjV199Vdu2bVNBQYHHuHJzc13+ftCgQZKkNWvWOG01bU+Q6tatq9tvv71I2bFjxzyez52cnByP5Z62Xrb/XSWV+HrLgjexlLRVtL1eSfEW35iiuAYNGkiSjDE6deqUpPK7Bp4SgtKwb9Zw9913W9tbl4ZjAt+wYcMriqUiryWAK8dNVwGgiqpVq5Zat26tbdu2afXq1TLGKDs72/qW23HkSJICAwOVlJSk5cuX68cff1SPHj2KjCi5S4YefvhhZWRkyGaz6dFHH9WAAQPUsmVL1atXTyEhIZIu7cQVGBgoSUWmzDlKTk7Wm2++KWOMZs6cqVdeeUWSdOrUKf3rX/+SdGkKVo0aNYoc5/iB8IsvvvB6NKGsPmhXNyUlC66uX3ldA3ufuRK5ubn64YcfJF3eFLniLieZAlB1kQwBQBXWpUsXbdu2TSdPntSOHTuUlZWlgoICRUREFJm6ZtepUyctX77cGj2y/zcwMFAdO3Z0qv/rr79aa5BeeeUVjR071mUc9hEET5o1a6bExEStX79eX3zxhZUMzZ0715qO5WoNyVVXXWU9t9lsat26dYnnKk/2b+0LCws91rOPuPma3377Tddee63bcvsokM1ms5IZX7sGjpYvX67c3FyFhoaqR48el9WGfY2TJB0+fPiytvYGUDUxTQ4AqrDi9xuyJzdJSUkKCnL+vss+de6nn37S+fPn9e9//1uS1LZtW0VHRzvV3759u/Xc08JwxzUlntiTne3bt2vbtm2SpBkzZkiSYmNjXW7g4JjUfffdd16dpzxFRUVJkk6fPu2x3s6dOysgmtLbsGGDV+XNmjWz7jnla9fAkX2KXLdu3RQREXFZbdx0003Wc1f37QJQfZEMAUAV5pgMrVq1yu16ITt7kpSbm6vU1FSdPHnSqR1H+fn51nNP6z8mTZrkVbwDBgywpkZ98cUXyszMtD58Jicnu5yi1LRpU91www2SpC+//FIHDx706lzlpUmTJpIuLW53l/BcuHBBX331VUWG5bXU1FS3ZRs3blR6erokFRll8bVrYGeM0eLFiyVd2RS5tm3bWqNln376qc6dO1cm8QHwfSRDAFCFNWjQwNq9Ki0tTevXr5fkvF7ILiIiQu3atZMkjR8/3vq9u2TIvgOc5P5D9MSJEzV//nyv4q1fv771IXvmzJmaMWOGNd3MvsGCK6NGjZJ0aQvu/v376/jx427rnj9/Xh9//LHy8vK8iqm0unbtaj2fMGGCU7kxRs8884wOHz5cLue/UgsWLNDs2bOdfn/u3DkNGzZM0qWpgMOHDy9S7kvXwG7Tpk3W37l3796X3U5AQID+/Oc/S5IyMzP1yCOPWFM3iyssLPTZawug9FgzBABVXJcuXbRr1y4dOXJEkhQUFKSkpCS39Tt16qSNGzda9zCx2Wxuk6f4+Hi1bt1a6enpmjhxok6fPq3k5GQ1bNhQhw4d0ueff665c+eqY8eO1pS7kjz00ENaunSpDh06pHHjxlnnsY88uDJw4EAtXbpUqamp2rRpk2644QYNHz5cXbt2Vb169ZSdna29e/dq1apVmjdvnv773//qkUce8Sqe0oqPj1dSUpLWrVunKVOm6MKFC0pJSVHNmjW1e/duTZo0SWlpaerQoUOJ99mpDAkJCRo0aJBWrlyp+++/X9HR0dq2bZvGjx9vjXSNHDnSaZMEX7oGdvYttdu1a6dGjRpdUVsjR47UwoULtWzZMn399ddq06aNnnzySSUkJCg8PFxHjx7VunXrNHPmTA0aNIh78QDVBMkQAFRxXbp00aeffmr9HB8f73HtRKdOnfT+++9bPzveJLM4m82mf/7zn+rWrZtOnTqlmTNnaubMmUXqtGnTRnPmzNHVV1/tVbx9+/ZVeHi4cnJyrHU33tx887PPPlODBg00YcIEnThxQmPHjnW7oUNERESZ7FTmztSpU9W1a1cdO3ZMqampTqNmzz//vNq0aeOTydDs2bPVvXt3ffzxx/r444+dyu+77z793//9n8tjfekaSP//eqGy2EUuICBA8+fPV0pKiubOnatdu3bp2WefveJ2Afg2pskBQBVXfIqbu/VCdsVHgUq6yWS7du20detWjRgxQo0bN1aNGjVUp04dJSYm6t1339X69etLdW+WyMhI9enTx/o5ICDA4+YMdoGBgRo/frx27NihF154QfHx8apdu7YCAwMVFRWlVq1aKTk5WampqTpy5IjbG8iWhbi4OG3evFlPPPGEGjdurODgYNWrV0933nmnFi9e7HL6nK9o0qSJNm3apFdffVUtW7ZUeHi4atasqS5dulgjfa4235B86xpkZWVZ28iXRTIkXbr/z5w5c/TDDz/o4YcfVpMmTRQWFqaoqCjFxcWpf//+mjFjhjWlDkDVZzPubggBAADgoz755BONGDFCMTExOnz4MPcHAnBZGBkCAABVjn290N13300iBOCysWYIAABUOZ07d9bNN99cZMolAJQW0+QAAAAA+CWmyQEAAADwSyRDAAAAAPwSyRAAAAAAv0QyBAAAAMAvkQwBAAAA8EskQwAAAAD8EskQAAAAAL9EMgQAAADAL5EMAQAAAPBLJEMAAAAA/BLJEAAAAAC/RDIEAAAAwC+RDAEAAADwSyRDAAAAAPwSyRAAAAAAv0QyBAAAAMAvkQwBAAAA8EskQwAAAAD8EskQAAAAAL9EMgQAAADAL5EMAQAAAPBLJEMAAAAA/NL/B3rXtG2GF3gPAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(4,3), dpi=200)\n", "ax = fig.add_subplot(111)\n", "ax.axhline(0, color='k', linewidth=0.7)\n", "ax.plot(x, 1e3*y, linewidth=1.0)\n", "ax.set_xlabel('Wavenumber / cm$^{-1}$')\n", "ax.set_ylabel(r\"$\\Delta d\\sigma/d\\Omega\\left(180^{o}\\right)$ / $10^{-3}~\\AA^{4}$/amu\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "08d4d9ba-ed8e-4931-8329-bde4d2f0cb5d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }