Introduction VROA MChD

Vibronic effects on spectroscopic properties of metal complexes

Herbert D. Ludowieg

Department of Chemistry, University at Buffalo, State University of New York

May 21, 2021

Introduction VROA MChD

Outline

- 2 VROA
 - Theory
 - Computational Details
 - Results

- Theory
- Computational Details
- Results

Outline for section 1

1 Introduction

2 VROA

- Theory
- Computational Details
- Results

3 MChD

- Theory
- Computational Details
- Results

Vibrational Raman optical activity (VROA)

- VROA is among the most recently developed chiroptical methods
- Measures the difference between left-/right-circularly polarized inelastically scattered light
- ROA studies have been found in protein structure analysis and transition metal complexes

VROA cntd.

- Nafie¹ developed a two-state model where the resonance ROA intensities become mono-signate
- $\bullet\,$ Confirmed by Jensen, et al ^2 for ${\rm H_2O_2}$ and (S)-methyloxirane
- Merten, et al³ found that for bis-(trifluoroacetylcamphorato)copper(II) the RROA spectrum remains bi-signate

- ¹ Nafie, et al Chem. Phys. **1996**, 205, 309–322
- ² Jensen, et al J. Chem. Phys. **2007**, 127, 134101
- ³ Merten, et al J. Phys. Chem. **2012**, 116, 7329–7336

Herbert D. Ludowieg Vibronic effects

Induced OA

- It is possible to induce OA on molecules by applying an external magnetic field
- Common application is magnetic circular dichroism (MCD)
- MCD is similar to natural CD (NCD) where the differential absorption of left-/right-circularly polarized light is measured
- No information regarding the absolute configuration can be extracted

Magneto-chiral dichroism (MChD)

- Unlike MCD, MChD was developed as an enantioselective technique
- Unlike MCD and NCD, the propagated light can be unpolarized
- Performing accurate measurements of MChD proves difficult as the MCD and NCD effects in the NIR region are much more dominant
- Will show that we get good agreement of the MChD spectra of $[Ni(en)_3]^{2+}$ to experiment

Outline for section 2

1 Introduction

2 VROA

- Theory
- Computational Details
- Results

3 MChD

- Theory
- Computational Details
- Results

Vibrational Raman optical activity

• The transition tensors can be expressed as geometric derivatives of the molecular properties

$$\Theta^{p}\Lambda^{p} = \langle 0|\Theta|1_{p}\rangle \langle 1_{p}|\Lambda|0\rangle = \frac{\partial\Theta}{\partial Q_{p}} \bigg|_{0} \left| \frac{\partial\Lambda}{\partial Q_{p}} \right|_{0}$$

- Θ and Λ can be:
 - $\alpha_{\alpha\alpha}$: dipole-dipole polarizability transition tensor
 - $G'_{\alpha\beta}$: electric dipole-magnetic dipole polarizability transition tensor
 - $A_{\gamma\delta\beta}$: electric dipole-electric quadrupole polarizability transition tensor

VROA cntd.

• The ROA intensities for a backscattering setup are calculated by

$$I^{R}(180^{\circ}) - I^{L}(180^{\circ}) = \Delta \frac{d\sigma}{d\Omega}(180^{\circ}) = K_{p} \left[\frac{48(\beta(G')_{p}^{2} + \beta(A)_{p}^{2}/3)}{90c} \right]$$

Where

$$\beta(G')_p^2 = \operatorname{Im}\left(i\frac{3\alpha_{\alpha\beta}^p G'_{\alpha\beta}^{p*} - \alpha_{\alpha\alpha}^p G'_{\beta\beta}^{p*}}{2}\right)$$
$$\beta(A)_p^2 = \operatorname{Re}\left(\frac{1}{2}\omega\alpha_{\alpha\beta}^p \epsilon_{\alpha\gamma\delta}A_{\gamma\delta\beta}^{p*}\right)$$

$$K_{p} = \frac{\pi^{2}}{\epsilon_{0}^{2}} (\tilde{\nu}_{\rm in} - \tilde{\nu}_{p})^{4} \frac{h}{8\pi^{2}c\tilde{\nu}_{p}} \frac{1}{1 - \exp[-hc\tilde{\nu}_{p}/k_{B}T]}$$

ROA calculations

- Optimizations of $[Co(en)_3]^{3+}$ and $[Rh(en)_3]^{3+}$ were performed with the Gaussian program package
- A B3LYP hybrid functional along with a def2-TZVP Gaussian-type basis set was used. A 28-electron ECP was used for Rh.
- Linear response tensors were calculated with the KS response module of NWChem
- Calculation of the ROA intensities was performed with the *Exatomic* program package developed by current and former group members

Introduction **Computational Details** VROA MChD Results

Vibronic effects

$\overline{\text{ROA}}$ calculations for $[\text{Rh(en)}_3]^{3+}$

- Calculated at 532 nm (2.331 eV) wavelength
- *lel*₃ structure agrees well with experimental spectrum
- Agrees with findings by Humbert-Droz, et al^4

ROA calculations

- The incident wavelength energy falls far below the lowest electronic excitation energy of $[Rh(en)_3]^{3+}$ at 320 nm (3.871 eV)
- For $[Co(en)_3]^{3+}$ the lowest calculated electronic transitions happen at 476 nm (2.605 eV) and 481 nm (2.578 eV)
- The incident laser wavelength falls within the near-resonance domain

- Performed a scan of different incident wavelengths from 425 nm to 1319 nm for $[Co(en)_3]^{3+}$
- All spectra normalized to the strongest peak in the 1319 nm spectrum
- ROA intensities rise sharply as the incident wavelength comes closer to the electronic excitation wavelength⁵

14/24

⁵ Abella; Ludowieg; and Autschbach, *Chirality* **2020**, *32*, 741–752

Herbert D. Ludowieg Vibronic effects

Outline for section 3

1 Introduction

2 VROA

- Theory
- Computational Details
- Results

- Theory
- Computational Details
- Results

Vibronic coupling

• Calculate vibronic properties, Λ , with the Herzberg-Teller approximation

$$\mathbf{\Lambda}_{1,2} = \sum_{p}^{M} \left\langle \phi_{1} | Q_{p} | \phi_{2} \right\rangle \frac{\partial \mathbf{\Lambda}_{1,2}^{e}\left(Q\right)}{\partial Q_{p}} \bigg|_{0}$$

• Derivative determined by a Sum-over states perturbation theory approach

$$\begin{split} \frac{\partial \mathbf{\Lambda}_{1,2}^{e}\left(Q\right)}{\partial Q_{p}} &= \sum_{k \neq 1} \left\langle \psi_{k}^{0} | \mathbf{\Lambda}_{1,2}^{e} | \psi_{2}^{0} \right\rangle \frac{\left\langle \psi_{1}^{0} | \partial H / \partial Q_{p} | \psi_{k}^{0} \right\rangle}{E_{1}^{0} - E_{k}^{0}} \\ &+ \sum_{k \neq 2} \left\langle \psi_{1}^{0} | \mathbf{\Lambda}_{1,2}^{e} | \psi_{k}^{0} \right\rangle \frac{\left\langle \psi_{k}^{0} | \partial H / \partial Q_{p} | \psi_{2}^{0} \right\rangle}{E_{2}^{0} - E_{k}^{0}} \end{split}$$

Vibronic coupling

- The terms $\langle \psi_i^0 | \partial H / \partial Q_p | \psi_j^0 \rangle$, in practice, are calculated by finite difference as $\partial \langle \psi_i^0 | H | \psi_j^0 \rangle / \partial Q_p$ using a 'floating' atomic orbital basis⁶.
- Spin-orbit coupling is introduced via

$$\mathbf{\Lambda}_{1,2}^{\mathrm{SO}} = \sum_{k,m} U_{1,k}^{0\dagger} \langle \phi_k | \mathbf{\Lambda}_{k,m}^{\mathrm{SF}} \left(Q \right) | \phi_m \rangle U_{m,2}^{0}$$

⁶ Orlandi, J. Chem. Phys. **1976**, 44 277–280

Magneto Chiral Dichroism intensities

• MChD intensities can be calculated with the equations from Barron and Vrbancich⁷

$$g_{j}(\omega) = \frac{\omega\Gamma}{(\omega_{j}^{2} - \omega^{2})^{2} + \omega^{2}\Gamma^{2}}$$
$$n^{\prime\uparrow\uparrow} - n^{\prime\uparrow\downarrow} = \frac{2\mu_{0}c\rho_{N}B}{3\hbar} \left[\omega_{j}g_{j}(\omega)\frac{C_{1}}{k_{B}T} - \omega g_{j}(\omega)\frac{C_{2}}{k_{B}T}\right]$$
$$C_{1} = \frac{1}{d}\sum_{\alpha,\beta,\gamma}\epsilon_{\alpha,\beta,\gamma}\sum_{n}m_{n,n}^{\alpha}\operatorname{Re}\left[\mu_{n,j}^{\beta}m_{j,n}^{\gamma}\right]$$
$$C_{2} = \frac{\omega}{15d}\sum_{\alpha,\beta}\sum_{n}m_{n,n}^{\alpha}\operatorname{Im}\left[3\mu_{n,j}^{\beta}\Theta_{j,n}^{\beta,\alpha} - \mu_{n,j}^{\alpha}\Theta_{j,n}^{\beta,\beta}\right]$$

⁷ Barron and Vrbancich, *Molecular Physics* **1984**, *51*, 715–730

Kohn-Sham Density Functional Theory

- KS-DFT calculations performed with the Gaussian program package
- Optimization and analytical frequency calculations performed with the hybrid B3LYP functional
- A Stuttgart-Dresden-Bonn relativistic ECP and a matching Gaussian-type valence basis set was used for Ni, and the 6-311+G(d) basis for all other atoms
- Wave-function theory calculations were performed on geometries from X-ray crystal structures, followed by optimization of the hydrogen positions with KS-DFT

Wave-Function Theory

- Calculations performed within the restricted active space (RAS) framework with a developers version of Molcas/OpenMolcas
- Scalar Relativistic effects were introduced via the second-order Douglass-Kroll-Hess Hamiltonian
- SR spin-free (SF) wavefunctions were determined in state-averaged RASSCF calculations
- Dynamic electron correlation was considered by performing second-order perturbation theory (PT2) calculations
- Spin-orbit coupling introduced via RAS state interaction (RASSI) among the spin-free states
- Diagonal elements of the SF part of the Hamiltonian were 'dressed' with PT2 energies

• Calculated (right) agrees well with experimental (left) spectrum in the peak intensity ratios for the peak c.a. 19500 cm^{-1}

 $[Ni(en)_3]^{2+}$ vibrationally resolved ortho-axial absorption and CD spectrum

• Peak intensity ratios between calculated (right) agrees well with experimental (left) spectrum

22/24

• Calculated (right) agrees very well with the experimental (left) spectrum 8

8

• Dashed line shows the purely electronic contributions to the MChD intensities

Atzori; Ludowieg; et al, *Sci. Adv.* **2021**, *7* Herbert D. Ludowieg Vibronic effects 23/24

Thank you!

- Normal modes, frequencies and equilibrium structures for the ground and excited stated were assumed to be the same
- SO coupling Hamiltonian was calculated with a one-center approximation
- Electron spin contributions vanish as the matrix elements do not depend on vibrational distortions due to the one-center approximation

- Optimized with a CAS(12,12) made up of 5 3d orbitals, 5 pseudo-4d orbitals, and 2 ligand based orbitals corresponding to the e_g bonding pair in the O_h parentage symmetry
- Wavefunction parameters were generated for a RAS[20,2,2,6,5,5] made up of 6 ligand based orbitals in RAS1, 5 3d orbitals in RAS2, and 5 pseudo-4d in RAS3 generating a total of 40 triplet and 45 singlet states for the d-d and LMCT transitions