Spin-orbit coupling and vibronic effects on spectroscopic properties of metal complexes

Herbert D. Ludowieg

Department of Chemistry, University at Buffalo, State University of New York

April 17, 2023

Herbert D. Ludowieg

Outline

Introduction

- Forbidden transitions
- Vibrational Raman Optical Activity
- Induced Optical Activity
- 2 Optical Activity of Spin-Forbidden Transitions
- Raman Optical Activity of [M(en)₃]³⁺
- Vibronic absorption spectra $[UX_6]^{2-1}$

Outline for section 1

Introduction

- Forbidden transitions
- Vibrational Raman Optical Activity
- Induced Optical Activity
- 2 Optical Activity of Spin-Forbidden Transitions
- 3 Raman Optical Activity of [M(en)₃]³⁺
- 4 Vibronic absorption spectra $[UX_6]^{2-1}$
- 5 Magnetochiral Dichroism of [Ni(en)₃]²⁺

- Selection rules govern the ability of an electron to transition between states
- Laporte selection rule states that a transition between two states must have a change in parity
- A spin-forbidden transition is one involving two states of different multiplicities
- In order to calculate the intensities in spin-forbidden transitions relativistic spin-orbit effects have to be introduced

Vibrational Raman optical activity (VROA)

- VROA is among the most recently developed chiroptical methods
- Measures the difference between left-/right-circularly polarized inelastically scattered light
- ROA studies have been found in protein structure analysis and transition metal complexes

- Nafie¹ developed a two-state model where the resonance ROA intensities become mono-signate
- Confirmed by Jensen, et al² for H₂O₂ and (S)-methyloxirane
- Merten, et al³ found that for bis-(trifluoroacetylcamphorato)copper(II) the RROA spectrum remains bi-signate

- ¹ Nafie, et al *Chem. Phys.* **1996**, *205*, 309–322
- ² Jensen, et al *J. Chem. Phys.* **2007**, *127*, 134101
- ³ Merten, et al *J. Phys. Chem.* **2012**, *116*, 7329–7336

Herbert D. Ludowieg

SOC and Vibronic effects

Introduction

- It is possible to induce OA on molecules by applying an external magnetic field
- Common application is magnetic circular dichroism (MCD)
- MCD is similar to natural CD (NCD) where the differential absorption of left-/right-circularly polarized light is measured
- No information regarding the absolute configuration can be extracted

- Unlike MCD, MChD was developed as an enantioselective technique
- Unlike MCD and NCD, the propagated light can be unpolarized
- Performing accurate measurements of MChD proves difficult as the MCD and NCD effects in the NIR region are much more dominant
- Will show that we get good agreement of the MChD spectra of [Ni(en)₃]²⁺ to experiment

Outline for section 2

Introductior

- Forbidden transitions
- Vibrational Raman Optical Activity
- Induced Optical Activity

2 Optical Activity of Spin-Forbidden Transitions

- 3 Raman Optical Activity of [M(en)₃]³⁺
- 4 Vibronic absorption spectra $[UX_6]^{2-1}$
- 5 Magnetochiral Dichroism of [Ni(en)₃]²⁺

Dipole and rotatory strengths

$$D = \langle \Psi_n | \hat{d} | \Psi_m \rangle \cdot \langle \Psi_m | \hat{d} | \Psi_n \rangle$$
$$R = \operatorname{Im} \left[\langle \Psi_n | \hat{d} | \Psi_m \rangle \cdot \langle \Psi_m | \hat{m} | \Psi_n \rangle \right]$$
$$\hat{m} = -\mu_B \left(\hat{L} + 2\hat{S} \right) \qquad \hat{d} = -e\hat{r}$$

Dissymetry factor, radiative decay constant, and oscillator strength

$$g_{\text{lum}} = 4R/D$$

$$k = 2\alpha^3 n^2 E^2 f$$

$$f = \frac{2}{3} \Delta E_{n,m} D$$

Molecules studied

 $(P, A_{|r})$ -**A**¹

⊿-[Co(en)3]3+

11/43

Optical Activity of Spin-Forbidden Transitions

- The Ir an Pt complexes were optimized with scalar ZORA spin-unrestricted DFT, employing the PBE0 functional
- The TZ2P basis set was used for the metals, DZ on the hydrogen and DZP for everything else
- TD-DFT calculations employed a COSMO for dichloromethane and the TDA with the PBE0 functional
- $[Co(en)_3]^{3+}$ was optimized with the B3LYP functional
- TD-DFT calculations employed the TDA with the PBE0 functional
- The four distinct conformers of [Co(en)₃]³⁺ were within 1 kcal/mol
- Use of the TDA takes care of triplet instabilities in agreement with observations by Peach, et. al.⁴

⁴ Peach; et al, *J. Chem. Theory Comput.* **2011**, *7*, 11, 3578–3585

	(P, Λ_{Ir}) - A ¹	(P,Δ_{lr}) - A ²	$\Lambda_{lr} extsf{-}\mathbf{A}$	<i>P</i> - 3a	<i>P</i> - 3c			
Experimental data								
$ au$ / μ S	350	280	0.53 / 2.4 ^a	16.5	21			
$g_{lum} { imes} 10^{-3}$	3.7	1.5	-0.9	4.0	3			
Calcd. TDA-TD-DFT/PBE0								
$ au$ / μ S	452	417	3.9	92.7	69.3			
$g_{lum} { imes} 10^{-3}$	0.0812	2.07	-1.08	-0.754	-0.720			
No spin								
$g_{\sf lum} imes 10^{-3}$ Spin	1.24	2.81	-1.46	2.21	1.80			

^a Observed decay kinetics was bi-exponential at room-temperature.

- *lel*₃-[Co(en)₃]³⁺ ECD spectra PBE0-TDA//B3LYP
- Experimental spectrum (dashed lines) from Mason and Peart⁵
- No shift was applied to the data
- Used a gaussian broadening of 2500 cm⁻¹ (0.31 eV)

⁵ Mason; Peart, *J. Chem. Soc. Dalton Trans* **1977**, *9*, 937–941

Outline for section 3

Introductior

- Forbidden transitions
- Vibrational Raman Optical Activity
- Induced Optical Activity
- 2 Optical Activity of Spin-Forbidden Transitions
 - Raman Optical Activity of $[M(en)_3]^{3+}$
- 4 Vibronic absorption spectra $[UX_6]^{2-1}$
- 5 Magnetochiral Dichroism of [Ni(en)₃]²⁺

Vibrational Raman Optical Activity

The ROA intensities for a backscattering setup are calculated by

$$I^{R}(180^{\circ}) - I^{L}(180^{\circ}) = \Delta \frac{d\sigma}{d\Omega}(180^{\circ}) = K_{\rho} \left[\frac{48(\beta(G')_{\rho}^{2} + \beta(A)_{\rho}^{2}/3)}{90c} \right]$$

$$\beta(\mathbf{G}')_{\mathbf{p}}^{2} = \operatorname{Im}\left(i\frac{3\alpha_{\alpha\beta}^{\mathbf{p}}\mathbf{G}_{\alpha\beta}'^{\mathbf{p}*} - \alpha_{\alpha\alpha}^{\mathbf{p}}\mathbf{G}_{\beta\beta}'^{\mathbf{p}*}}{2}\right)$$
$$\beta(\mathbf{A})_{\mathbf{p}}^{2} = \operatorname{Re}\left(\frac{1}{2}\omega\alpha_{\alpha\beta}^{\mathbf{p}}\epsilon_{\alpha\gamma\delta}\mathbf{A}_{\gamma\delta\beta}^{\mathbf{p}*}\right)$$

$$\mathcal{K}_{\rho} = \frac{\pi^2}{\epsilon_0^2} (\tilde{\nu}_{\mathsf{in}} - \tilde{\nu}_{\rho})^4 \frac{\hbar}{8\pi^2 c \tilde{\nu}_{\rho}} \frac{1}{1 - \exp[-\hbar c \tilde{\nu}_{\rho} / k_{\mathsf{B}} T]}$$

Herbert D. Ludowieg

Raman Optical Activity of [M(en)3]3+

 The transition tensors can be expressed as geometric derivatives of the molecular properties

$$\Theta^{\boldsymbol{p}}\Lambda^{\boldsymbol{p}} = \langle 0|\Theta|1_{\boldsymbol{p}}\rangle \langle 1_{\boldsymbol{p}}|\Lambda|0\rangle = \frac{\partial\Theta}{\partial \boldsymbol{Q}_{\boldsymbol{p}}} \bigg|_{0} \left| \frac{\partial\Lambda}{\partial \boldsymbol{Q}_{\boldsymbol{p}}} \right|_{0}$$

- Θ and Λ can be:
 - $\alpha_{\alpha\alpha}$: dipole-dipole polarizability transition tensor
 - $G'_{\alpha\beta}$: electric dipole-magnetic dipole polarizability transition tensor
 - $A_{\gamma\delta\beta}$: electric dipole-electric quadrupole polarizability transition tensor

$$\mathcal{K}_{\rho} = \frac{\pi^2}{\epsilon_0^2} (\tilde{\nu}_{\mathsf{in}} - \tilde{\nu}_{\rho})^4 \frac{h}{8\pi^2 c \tilde{\nu}_{\rho}} \frac{1}{1 - \exp[-hc \tilde{\nu}_{\rho}/k_{\mathsf{B}}T]}$$

- This is an experimental parameter as it depends on the incident frequency, $\tilde{\nu}_{\text{in}}$
- The backscattering intensities are formally calculated as

$$\Delta \frac{d\sigma}{d\Omega} (180^{\circ}) \propto \frac{4}{c} \left[24\beta \left(\mathbf{G}' \right)_{\mathbf{p}}^{2} + 8\beta \left(\mathbf{A} \right)_{\mathbf{p}}^{2} \right]$$

Herbert D. Ludowieg

Raman Optical Activity of [M(en)3]3+

- Optimizations of [Co(en)₃]³⁺ and [Rh(en)₃]³⁺ were performed with the Gaussian program package
- A B3LYP hybrid functional along with a def2-TZVP Gaussian-type basis set was used. A 28-electron ECP was used for Rh.
- Linear response tensors were calculated with the KS response module of NWChem
- Calculation of the ROA intensities was performed with newly developed in-house code

ROA calculations for $[Rh(en)_3]^{3+}$

- Calculated at 532 nm (2.331 eV) wavelength
- *lel*₃ structure agrees well with experimental spectrum
- Agrees with findings by Humbert-Droz, et al⁶

⁶ Humbert-Droz; et al, *Phys. Chem. Chem. Phys* **2014**, *16*, 23260–23273

Herbert D. Ludowieg

SOC and Vibronic effects

Raman Optical Activity of [M(en)3]3+

- The incident wavelength energy falls far below the lowest electronic excitation energy of [Rh(en)₃]³⁺ at 320 nm (3.871 eV)
- For [Co(en)₃]³⁺ the lowest calculated electronic transitions happen at 476 nm (2.605 eV) and 481 nm (2.578 eV)
- The incident laser wavelength falls within the near-resonance domain

22/43

Raman Optical Activity of [M(en)3]3+

Herbert D. Ludowieg

SOC and Vibronic effects

Raman Optical Activity of [M(en)3]3+

- Performed a scan of different incident wavelengths from 425 nm to 1319 nm for [Co(en)₃]³⁺
- All spectra normalized to the strongest peak in the 1319 nm spectrum
- ROA intensities rise sharply as the incident wavelength comes closer to the electronic excitation wavelength⁷

⁷ Abella; Ludowieg; and Autschbach, Chirality 2020, 32, 741–752

SOC and Vibronic effects

Raman Optical Activity of [M(en)3]3+

Outline for section 4

Introductior

- Forbidden transitions
- Vibrational Raman Optical Activity
- Induced Optical Activity
- 2 Optical Activity of Spin-Forbidden Transitions
- 3 Raman Optical Activity of [M(en)₃]³⁺
- Vibronic absorption spectra [UX₆]²⁻

- Central to quantum chemistry
- To a good approximation the electrons can be considered to be moving in a field of fixed nuclei
- Separates the wavefunction into a product of the electronic and nuclear wavefunctions
- Much of computational research is on static systems
- What happens when the nuclei are allowed to move?

$$\Psi\left(\boldsymbol{q};\boldsymbol{Q}\right)=\psi\left(\boldsymbol{q};\boldsymbol{Q}\right)\phi\left(\boldsymbol{Q}\right)$$

Vibronic coupling

$$egin{aligned} oldsymbol{\mu}_{1,2} &= \langle \Psi_1\left(oldsymbol{q};oldsymbol{Q}
ight) \left| oldsymbol{\mu}
ight| \Psi_2\left(oldsymbol{q};oldsymbol{Q}
ight)
ight
angle \ oldsymbol{\mu}_{1,2} &= \langle \phi_1\left(oldsymbol{Q}
ight) \left| oldsymbol{\mu}_{1,2}^e\left(oldsymbol{Q}
ight) \left| \phi_2\left(oldsymbol{Q}
ight)
ight
angle \ oldsymbol{\mu}_{1,2}^e\left(oldsymbol{Q}
ight) &= \langle \psi_1\left(oldsymbol{q};oldsymbol{Q}
ight) \left| oldsymbol{\mu}
ight| \psi_2\left(oldsymbol{q};oldsymbol{Q}
ight)
ight
angle \end{aligned}$$

$$\langle \phi_1(\boldsymbol{Q}) | \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}}(\boldsymbol{Q}) | \phi_2(\boldsymbol{Q}) \rangle = \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}}(\boldsymbol{Q}_0) \langle \phi_1 | \phi_2 \rangle + \sum_{\boldsymbol{\rho}}^{\boldsymbol{h}} \langle \phi_1 | \boldsymbol{Q}_{\boldsymbol{\rho}} | \phi_2 \rangle \frac{\partial \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}}}{\partial \boldsymbol{Q}_{\boldsymbol{\rho}}} \Big|_0 + \cdots$$

- Franck-Condon approximation, $\mu_{1,2}^{e}\left(\mathcal{Q}_{0}
 ight)\left\langle \phi_{1}|\phi_{2}
 ight
 angle$
- Herzberg-Teller approximation, $\sum_{p}^{n} \langle \phi_1 | Q_p | \phi_2 \rangle \frac{\partial \mu_{1,2}^e}{\partial Q_p} \Big|$
- In the limit of small approximations

$$\left\langle \phi_{1}\left(\boldsymbol{Q}\right) |\boldsymbol{\mu}_{1,2}^{\boldsymbol{e}}\left(\boldsymbol{Q}\right) |\phi_{2}\left(\boldsymbol{Q}\right) \right\rangle = \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}}\left(\boldsymbol{Q}_{0}\right) \left\langle \phi_{1} |\phi_{2} \right\rangle + \sum_{\boldsymbol{p}}^{n} \left\langle \phi_{1} |\boldsymbol{Q}_{\boldsymbol{p}} |\phi_{2} \right\rangle \frac{\partial \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}}}{\partial \boldsymbol{Q}_{\boldsymbol{p}}} \Big|_{0}$$
27/43

Origin of $\partial \mu_{1,2}^{e} / \partial Q_{p}$

 Considering a perturbation expansion of the wavefunction to first order

$$\psi_{a}(q; Q) = \psi_{a}^{0} + \sum_{j \neq a} \psi_{a}^{0} C_{aj}$$
 $C_{aj} = rac{\langle \psi_{a}^{0} | \partial H / \partial Q | \psi_{j}^{0}
angle}{E_{a}^{0} - E_{j}^{0}} (Q - Q_{0})$

• Following a prescription by Orlandi⁸

$$\mathcal{C}_{aj} = rac{\partial \left< \overline{\psi}_a^0
ight| \mathcal{H} | \overline{\psi}_j^0
ight> / \partial \mathcal{Q}}{\mathcal{E}_a^0 - \mathcal{E}_j^0}$$

- Where, a 'floating' atomic orbital basis is used re-calculating the one- and two-electron integrals at each value of Q keeping the CI coefficients the same as Q₀
- ⁸ Orlandi, *J. Chem. Phys.* **1976**, 44 277–280

Herbert D. Ludowieg

SOC and Vibronic effects

 Derivative determined by a Sum-over states perturbation theory approach

$$\begin{split} \frac{\partial \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}}\left(\boldsymbol{Q}\right)}{\partial \boldsymbol{Q}_{\boldsymbol{\rho}}} &= \sum_{k \neq 1} \left\langle \psi_{\boldsymbol{k}}^{0} | \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}} | \psi_{2}^{0} \right\rangle \frac{\partial \left\langle \overline{\psi}_{1}^{0} | \boldsymbol{H} | \overline{\psi}_{k}^{0} \right\rangle / \partial \boldsymbol{Q}}{\boldsymbol{E}_{1}^{0} - \boldsymbol{E}_{k}^{0}} \\ &- \sum_{k \neq 2} \left\langle \psi_{1}^{0} | \boldsymbol{\mu}_{1,2}^{\boldsymbol{e}} | \psi_{k}^{0} \right\rangle \frac{\partial \left\langle \overline{\psi}_{k}^{0} | \boldsymbol{H} | \overline{\psi}_{2}^{0} \right\rangle / \partial \boldsymbol{Q}}{\boldsymbol{E}_{k}^{0} - \boldsymbol{E}_{2}^{0}} \end{split}$$

Spin-orbit coupling is introduced via

$$\boldsymbol{\mu}_{1,2}^{\text{SO}} = \sum_{k,m} \boldsymbol{U}_{1,k}^{0\dagger} \left\langle \phi_{k} | \boldsymbol{\mu}_{k,m}^{\text{SF}} \left(\boldsymbol{Q} \right) \left| \phi_{m} \right\rangle \boldsymbol{U}_{m,2}^{0}$$

- The transitions in the 5f manifold of $[UX_6]^{2-}$ (X = Cl, Br) are forbidden transitions as the molecule has O_h symmetry
- Due to symmetry all 5f orbitals are of the same parity and Laporte forbidden
- When the molecule distorts higher states will couple and provide intensity borrowing
- Only normal modes that break the inversion symmetry will contribute

• Kohn-Sham DFT details

- All calculations were performed with the ADF program suite using the semi-local PBE functional
- The optimization and harmonic frequency calculations used the TZ2P basis set and the scalar relativistic ZORA Hamiltonian
- The molecules were calculated in the $a_{2u}^{1}t_{2u}^{1}$ ground state
- Wavefunction theory calculations
 - All calculations were performed with the OpenMolcas program suite
 - Scalar relativistic effects were introduced via the second-order Douglas-Kroll-Hess Hamiltonian
 - ANO-RCC-VTZP basis sets were used
 - MS-PT2 calculations were performed to capture dynamic electron correlation
 - SOC was introduced via restricted active space state interaction
- Post-processing to calculate vibronic intensities was handled by a newly developed code

8 Ryan; Jørgensen, Mol. Phys., 1964, 7, 17-29

Herbert D. Ludowieg

SOC and Vibronic effects

Vibronic absorption spectra $[UX_6]^{2-}$

Results [UBr₆]²⁻

8 Ryan; Jørgensen, Mol. Phys., 1964, 7, 17-29

Herbert D. Ludowieg

SOC and Vibronic effects

Vibronic absorption spectra [UX₆]²⁻

Outline for section 5

Introductior

- Forbidden transitions
- Vibrational Raman Optical Activity
- Induced Optical Activity
- 2 Optical Activity of Spin-Forbidden Transitions
- 3 Raman Optical Activity of [M(en)₃]³⁺
- 4 Vibronic absorption spectra $[UX_6]^{2-1}$

5 Magnetochiral Dichroism of [Ni(en)₃]²⁺

Magneto Chiral Dichroism intensities

- Theory for MChD was developed by Barron and Vrbancich⁹ $\Delta n_{\text{MChD}}^{\text{D/L}}(\omega, \mathbf{k}, \mathbf{B}) \propto \mathbf{k} \cdot \mathbf{B} \left[A_1^{\text{D/L}} \cdot f_1(\omega) + \left(B_1^{\text{D/L}} + C_1^{\text{D/L}}/kT \right) g_1(\omega) + A_2^{\text{D/L}} \cdot f_2(\omega) + \left(B_2^{\text{D/L}} + C_2^{\text{D/L}}/kT \right) g_2(\omega) \right]$
- The C-term can be calculated with the equations from Barron¹⁰

$$\begin{split} g_{j}(\omega) &= \frac{\omega\Gamma}{(\omega_{j}^{2} - \omega^{2})^{2} + \omega^{2}\Gamma^{2}} \\ n'^{\uparrow\uparrow} - n'^{\uparrow\downarrow} &= \frac{2\mu_{0}c\rho_{N}B}{3\hbar} \left[\omega_{j}g_{j}(\omega)\frac{C_{1}}{k_{B}T} - \omega g_{j}(\omega)\frac{C_{2}}{k_{B}T} \right] \\ C_{1} &= \frac{1}{d}\sum_{\alpha,\beta,\gamma}\epsilon_{\alpha,\beta,\gamma}\sum_{n}m_{n,n}^{\alpha}\text{Re} \left[\mu_{n,j}^{\beta}m_{j,n}^{\gamma} \right] \\ C_{2} &= \frac{\omega}{15d}\sum_{\alpha,\beta}\sum_{n}m_{n,n}^{\alpha}\text{Im} \left[3\mu_{n,j}^{\beta}\Theta_{j,n}^{\beta,\alpha} - \mu_{n,j}^{\alpha}\Theta_{j,n}^{\beta,\beta} \right] \end{split}$$

- ⁹ Barron and Vrbancich, *Molecular Physics* **1984**, *51*, 715–730
- ¹⁰ Barron, Molecular light scattering and optical activity **2004** 2nd edition

Herbert D. Ludowieg

SOC and Vibronic effects

Magnetochiral Dichroism of [Ni(en)3]2+

Vibronic coupling

$$\begin{aligned} \frac{\partial \boldsymbol{\theta}_{1,2}^{\boldsymbol{e}}\left(\boldsymbol{Q}\right)}{\partial \boldsymbol{Q}_{\boldsymbol{\rho}}} &= \sum_{k \neq 1} \left\langle \psi_{k}^{0} | \boldsymbol{\theta}_{1,2}^{\boldsymbol{e}} | \psi_{2}^{0} \right\rangle \frac{\partial \left\langle \overline{\psi}_{1}^{0} | \boldsymbol{H} | \overline{\psi}_{k}^{0} \right\rangle / \partial \boldsymbol{Q}}{E_{1}^{0} - E_{k}^{0}} \\ &- \sum_{k \neq 2} \left\langle \psi_{1}^{0} | \boldsymbol{\theta}_{1,2}^{\boldsymbol{e}} | \psi_{k}^{0} \right\rangle \frac{\partial \left\langle \overline{\psi}_{k}^{0} | \boldsymbol{H} | \overline{\psi}_{2}^{0} \right\rangle / \partial \boldsymbol{Q}}{E_{k}^{0} - E_{2}^{0}} \\ \boldsymbol{\theta}_{1,2}^{SO} &= \sum_{k \neq m} U_{1,k}^{0\dagger} \left\langle \phi_{k} | \boldsymbol{\theta}_{k,m}^{SF}\left(\boldsymbol{Q}\right) | \phi_{m} \right\rangle U_{m,2}^{0} \end{aligned}$$

- *µ*: electric dipole moment
- m: magnetic dipole moment
- Θ : traceless quadrupole moment

Kohn-Sham Density Functional Theory

- KS-DFT calculations performed with the Gaussian program package
- Optimization and analytical frequency calculations performed with the hybrid B3LYP functional
- A Stuttgart-Dresden-Bonn relativistic ECP and a matching Gaussian-type valence basis set was used for Ni, and the 6-311+G(d) basis for all other atoms
- Wave-function theory calculations were performed on geometries from X-ray crystal structures, followed by optimization of the hydrogen positions with KS-DFT

- Calculations performed within the restricted active space (RAS) framework with a developers version of Molcas/OpenMolcas
- Scalar Relativistic effects were introduced via the second-order Douglass-Kroll-Hess Hamiltonian
- SR spin-free (SF) wavefunctions were determined in state-averaged RASSCF calculations
- Dynamic electron correlation was considered by performing second-order perturbation theory (PT2) calculations
- Spin-orbit coupling introduced via RAS state interaction (RASSI) among the spin-free states
- Diagonal elements of the SF part of the Hamiltonian were 'dressed' with PT2 energies

[Ni(en)₃]²⁺ vibrationally resolved absorption spectrum

 Calculated (right) agrees well with experimental (left) spectrum in the peak intensity ratios for the peak c.a. 19500 cm⁻¹

39/43

Herbert D. Ludowieg

SOC and Vibronic effects

Magnetochiral Dichroism of [Ni(en)3]2+

[Ni(en)₃]²⁺ vibrationally resolved ortho-axial absorption and CD spectrum

 Peak intensity ratios between calculated (right) agrees well with experimental (left) spectrum

[Ni(en)₃]²⁺ vibrationally resolved MChD spectrum

- Calculated (bottom) agrees very well with the experimental (top) spectrum¹¹
- Dashed line shows the purely electronic contributions to the MChD intensities

¹¹ Atzori; Ludowieg; et al, Sci. Adv. 2021, 7

Herbert D. Ludowieg

SOC and Vibronic effects

Magnetochiral Dichroism of [Ni(en)3]2+

- UB center for Computational Research
- Dr. Autschbach and committee
- Autscbach group members

SOC and Vibronic effects

Magnetochiral Dichroism of [Ni(en)3]2+

Thank you!

Herbert D. Ludowieg

SOC and Vibronic effects

Magnetochiral Dichroism of [Ni(en)3]2+

- Normal modes, frequencies and equilibrium structures for the ground and excited stated were assumed to be the same
- SO coupling Hamiltonian was calculated with a one-center approximation
- Electron spin contributions vanish as the matrix elements do not depend on vibrational distortions due to the one-center approximation

- Optimized with a CAS(12,12) made up of 5 3d orbitals, 5 pseudo-4d orbitals, and 2 ligand based orbitals corresponding to the eg bonding pair in the Oh parentage symmetry
- Wavefunction parameters were generated for a RAS[20,2,2,6,5,5] made up of 6 ligand based orbitals in RAS1, 5 3*d* orbitals in RAS2, and 5 pseudo-4*d* in RAS3 generating a total of 40 triplet and 45 singlet states for the d–d and LMCT transitions

	(P,Λ_{Ir}) - A ¹	$(P,\Delta_{Ir}) extsf{-}\mathbf{A}^2$	$\Lambda_{\text{lr}}\text{-}\textbf{A}$	<i>P</i> - 3a	<i>P</i> - 3c			
Experimental data								
E/eV	2.36	2.36						
	2.21	2.21	2.49	1.91	1.93			
	2.04	2.04						
Calcd. TDA-TD-DFT/PBE0								
E / eV ^e	2.22	2.22	2.37	1.76	1.79			

- *lel*₃-[Co(en)₃]³⁺ ECD spectra PBE0//B3LYP (left) BP86//B3LYP (right)
- Experimental spectrum (dashed lines) from Mason and Peart¹²
- Energies in the left figure were blue shifted by ${\approx}1600~\text{cm}^{\text{-1}}$ (0.2 eV)
- Energies in the right figure were red shifted by ${\approx}2400~\text{cm}^{-1}$ (0.3 eV)
- Used a gaussian broadening of 2500 cm⁻¹ (0.31 eV)

¹² Mason; Peart, J. Chem. Soc. Dalton Trans 1977, 9, 937–941

Herbert D. Ludowieg

SOC and Vibronic effects

Conformer effects on [Co(en)₃]³⁺

PBE0-TDA//B3LYP

Functional effects on $[Co(en)_3]^{3+}$

- Blue: PBE0-TDA//B3LYP no shift
- Green: B3LYP-TDA//B3LYP red shift \approx 950 cm⁻¹(0.12 eV)
- Red: BP86-TDA//B3LYP red shift \approx 2400 cm⁻¹(0.3 eV)

ROA $[Co(en)_3]^{3+}$ ECD

